
 

 

A Model Analysis of Temporally Asymmetric Hebbian Learning 

 
 

KIYOTOSHI MATSUOKA 
Department of Brain Science and Engineering 

Kyushu Institute of Technology 
Tobata, Kitakyushu 804-8550 

JAPAN 

 

 

Abstract: - Among a lot of models for learning in neural networks, Hebbian and anti-Hebbian learnings might be 
the most familiar ones.  Although there are many variants, the most typical paradigms are such that when pre- and 
post-synaptic activations (firing) occur at the same time, synaptic efficacy is increased (Hebbian) or decreased 
(anti-Hebbian).  According recent neurophysiological observations, however, synaptic modification in neurons 
depends on the precise temporal relation between pre-synaptic and post-synaptic acitivities.  Namely, pre-synaptic 
spikes that precede postsynaptic firing lead to synaptic potentiation, while those that follow postsynaptic firing 
elicit synaptic depression.  This kind of asymmetric feature of neural plasticity seems to play a very important role 
in temporal behavior of animals.  The purpose of this study is to address certain potential implications of the 
asymmetric Hebbian (anti-Hebbian) learning through a mathematical model and computer simulations.  Although 
the neuron model and the learning rule used in this study are extremely simplified compared with those of real 
neurons, they can explain some salient features of temporal behavior in animals. 
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1. Introduction 

Among a lot of models for learning in neural 
networks, Hebbian and anti-Hebbian learning might 
be the most familiar ones in the community of 
artificial neural netwrorks.  Although there are 
many variants, the most typical paradigms are such 
that when pre- and post-synaptic activations occur at 
the same time, synaptic efficacy is increased 
(Hebbian) or decreased (anti-Hebbian).[2] According 
recent neuro- physiological observations, however, 
synaptic modification in neurons depends on the 
precise temporal relation between pre-synaptic and 
post-synaptic firing.[4]  Namely, pre-synaptic spikes 
that precede postsynaptic firing lead to synaptic 

potentiation, while those that follow postsynaptic 
firing elicit synaptic depression.  This kind of 
asymmetric feature of neural plastic ity seems to play 
a very important role in temporal learning involved in 
the behavior of animals. 

The purpose of this study is to address some 
potential implications of the asymmetric Hebbian 
learning through a mathematical model.  Although 
the neuron model and the learning rule considered in 
this paper might be extremely simplified compared 
with those of real neurons, they can explain some 
salient features of temporal behavior in animals.  
For example, memory of temporal patterns, 
self-organization of coincident detectors, and 
generation of very slow temporal patterns 



  

(oscillations) can be explained in the framework of 
the present model. 
 

2. Mathematical Formulation 

2.1 A simple circuit dynamics and a learning 
dynamics 

We start with a ‘static’ system with N inputs and a 
single cell, whose input-output relation is given by 
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y t w t s t
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or in a vector form 
 ( ) ( ) ( )y t t t= w s ,   (2) 

where [ ]1( ) (),..., ( ) T
Nt s t s t=s  and ( )t =w  

[ ]1( ),..., ( )Nw t w t .  The learning equation is 

 ( ) ( 1) ( ) ( ) ( )i i i iw t w t w t y t s tα∆ + − =@  (3) 

or  

 ( ) ( ) ( )Tt y t tα∆ =w s ,  (4) 

where α is a learning coefficient, being a small 
positive or negative constant.  When α is positive / 
negative, eqn (4) represents a Hebbian learning / 
anti-Hebbian learning.  According to algorithm (4) 
by itself, the magnitude of ( )tw  diverges to infinity 

or shrinks to zero (corresponding to the signs), so 
some normalization operation is usually introduced, 
for example, 
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w w

w
w w

.  (5) 

This operation maintains the magnitude (or norm) of 
( )tw  to be zero through the entire process.  It is 

well known that the weight vector converges to the 
most dominant or the least dominant eigenvector of 
the ‘instantaneous’ correlation matrix of s(t), i.e. 

( ) ( )TE t t =  R s s .  Namely, the network becomes a 

principal or minor component analyzer.  Of course, 
eqn (4) with (5) is just an instance among a lot of 
models representing Hebb-type learning. 
    We want to extend the above ‘static’ model to a 
more sophisticated one that involves two kinds of 

temporal dynamics: 
(i)  To incorporate a temporal dynamics into the 

circuit equation (1); 
(ii)  To incorporate a temporal characteristics into 

the learning equation (4). 
In the new model described below, the dynamics 
of the weight vector w(t) will depend on the 

auto-correlation matrix ( ) ( ) ( )TE t tτ τ = + R s s  

(τ = …, -1, 0, 1, …). 

 
2.2 A generalized model 
As for (i), we consider a more general model. 
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Here, ( ) ( 0,1,..., )ih Lτ τ =  is a fixed weighting 
function.  Note that { ( ) (0),...,i iw t h  ( ) ( )}i iw t h L  is 

an impulse response at time t for input si(t).  
Rewriting this in a matrix form, we have 
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where { }1( ) diag ( ),..., ( )Nh hτ τ τ=H . 

    The basic learning equation (3) can be expressed 
as 

0
( 1) (0) ( ) ( )

t

i i i
t

w t w y t s tα
′=
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Here, α is a small positive constant.  The above 
equation implies that weight ( )iw t  at time t is an 
accumulation of the product of input ( )is t ′  and the 
output ( )y t′  in the past.  We here generalize this 

equation to  
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(9) 
Namely, this equation implies that ( )iw t  depends on 

the temporal relation between the input and the 
output.  The kernel ( )ig τ  is considered zero for 

large τ, i.e., ( )ig τ = 0 for |τ| > K.  An example of 

( )ig τ  is shown in Fig.1.  This implies, in 

terminology of neurophysiology, that pre-synaptic 
activation that precedes the postsynaptic activations 
lead to synaptic potentiation (Hebbian learning), 
while those that follow postsynaptic firing elicit 



  

synaptic depression (anti-Hebbian learning).  We 
call this kind of learning ‘asymmetric Hebbian 
learning’. 

From eqn (9) we have 
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Expressing this equation in matrix form, we have 

( )t∆ =w  
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where { }1( ) diag ( ),..., ( )Ng gτ τ τ=g .  After t ≥ K, 

we can write this as 
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                          (10) 
This is the algorithm that we want to investigate in 
the paper, though some variations will appear in the 
next section, depending on each application. 
 
2.3 An analysis of the asymmetric learing 
Substituting eqn (7) into eqn (10), we have 
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     (11) 
Here, we assume that s(t) is a stationary random 
process and moreover that α is very small and hence 
w(t) varies very slowly, implying that 

( ) ( )t tτ+ ≈w w for |τ| ≤  M.  Then, the behavior of 

w(t) can be approximated as 
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where ( ) ( ) ( )TE t tτ τ = + R s s .  Matrix R(τ) is the 

auto-correlation matrix of s(t), satisfying RT(τ) = 
R(-τ).  Defining further 
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we have 

 ( ) ( )t tα∆ =w w R .   (14) 

    In order to avoid the divergence of the weight 
w(t), we may introduce the same normalizing 
operation as eqn (5) again: 
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    So far, we have considered a discrete-time 
model.  The continuous-time model corresponding 
to eqn (10) becomes 
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When trying to perform a mathematical analysis, the 
continuous model is more convenient.  It can be 
shown that the continuous form of eqn (14) with eqn 
(15) becomes 

( )( ) 1
( ) ( ) ( ) ( )

2
T Td t

t t t t
dt

= − +w
w R w R R w w .(17) 

Note that in the continuous-time model, matrix R  
has been defined as 

0
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K
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We find that if (0) 1=w , relation ( ) 1t =w  holds 

for every time t because 

( ) ( )
2

2( )
( ) ( ) 1 ( ) 0T Td t
t t t

dt
= + − =

w
w R R w w

. 
Namely, w(t) continues to stay on the surface of the 
unit sphere if the initial condition is given as 

(0) 1=w .   

From now, we deal with only the case ( )τ =G I  

( 0τ = ) and = O ( 0τ ≠ ); in every example in the 
next section, diagonal matrix ( )τG  will be set so.  

Then, we have 

 ( ) ( )
K

K

dτ τ τ
−

= ∫R R G .  (19) 



  

Here we consider two special cases. 
  When ( )ig τ  are even functions, i.e. 

( ) ( )τ τ− =G G , then R  becomes a symmetric 

matrix and w(t) to converges to a stable equilibrium 
w satisfying 

( )1
2

T T= + ⋅wR w R R w w   (20) 

This implies that w is an eigenvector of R  and its 

eigenvalue is ( )1
2

T T+w R R w .  Since R  is a 

symmetric matrix with real entries, R  has real 
eigenvalues. 

When ( )ig τ  are odd functions, i.e. 

( ) ( )τ τ− = −G G , then R  becomes a 

skew-symmetric matrix.  In this case eqn (17) has 
no equilibrium on the surface of the unit sphere, 
implying that weight vector w(t) continues moving 
on the surface. 

It should be noted that the formulation described 
above is just a particular representation of the 
generalized (asymmetric) Hebbian learning.   A lot 
of modifications are conceivable in consideration of 
biological plausibility.  Some of the followings may 
appear in the next section. 
(i)  The output of the neuron is always positive; 

( ) 0y t ≥ ; 
(ii)  Weight ( )iw t  is always positive / negative, if 

it is excitatory / inhibitory; 
(iii)  Normalization (15) of w(t) may not exist. 
 

3. Some Examples 

 
3.1 Slow oscillation 
Fig. 2 shows a slow oscillation generated by a neuron 
that obeys an asymmetric learning.  A (linear) 
neuron receives two Gaussian white signals, one of 
which is generated by shifting the other. Kernel 

( )ig τ  was given as in Fig.1, 

Although the time constant of the neuron’s 
activity is some milliseconds, the behavioral-level 
time constant in animals is much greater than that.  
If the synaptic plasticity is involved in the neural 

dynamics, the network can produce a very slow 
neural activity.  
 

3.2 Bimodal distribution of weights  
Some researcher pointed out that the distribution of 
synaptic weights of a neuron is bimodal.[9]  This 
property can be realized in our model.  In this 
simulation the neuron receives twenty input signals 
(impulse trains with different time lags).  Fig.3 
shows the distribution. 
 

3.3 Neural integrator 
A neural integrator can be built based on the 
proposed model.[1]  The function of maintaining 
neural activation, depending on the input, plays very 
important roles in various phases.  Fig. 4 shows a 
simple realization of neural (leaky) integrator.  The 
neuron receives three inputs: a constant input 
(constant firing rate), and an excitatory signal 
(impulse) and an inhibitory signal (impulse).  The 
synaptic weight involved in the constant input is 
variable. 
 
3.4 Habituation and dishabituation 
As an interesting example, we can show a model that 
mimics the memory of temporal pattern observed in 
the crayfish.[8]  Although the mechanism of the 
memory apparently seems to be sophisticated, it can 
be explained by a very simple learning neural net.  It 
only consists of a simple memory that transforms a 
temporal pattern to a spatial pattern of the synaptic 
weights.  The behavior of the model is quite similar 
to habituation and dishabituation observed in the 
visual system of the crayfish. 
 

4. Conclusion 

We have shown a model for a generalized Hebbian / 
anti-Hebbian learning.  Although the is a very simple 
model, it can explain some salient features observed in 

real neurons of animals. 
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Fig. 1 A kernel function in the 
asymmetric Hebbian learning. 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 Fig.2 Slow oscillation generalized by 

 an asymmetric Hebbian learning. 
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       Fig.3 Bimodal distirbution of synaptic weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.4 Neural integrator 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Fig. 5 Habituation and dishabituation 
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