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Abstract: - This paper investigates the use of Genetic Algorithms (GA’s) to evolve optimal strategies to
the Prisoner’s Dilemma, a classic game theory problem. The problem was heavily studied in the 1980’s,
but using more advanced computing techniques, this research extends the existing body of research. My
hypothesis is that populations evolve to exhibit two traits: the ability to defend against defectors, and the
ability to cooperate with other cooperators. Two successful, well studied strategies which embody these
traits, Pavlov and Tit for Tat, are used as controls. Populations that do not possess these traits a priori are
evolved and then compared to the performance of the controls. The results presented here strongly
indicate that the hypothesized traits are present in all evolved populations.
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1 Introduction
The Prisoner's Dilemma is a traditional and
elegant model for studying decision making and
self-interest. It has been studied extensively to
model behavior from petty theft to nuclear war.
Much of the current body of research has
focused on which strategy in the game is “best.”
Different strategies have been analyzed,
competed in tournaments, and even subjected to
Darwinian selection. In the latter case, strategies
were usually played against populations which
were considered representative of the body of
possible strategies.

Two strategies in particular have been found to
be evolutionarily successful: Tit for Tat, which
has long been touted as one of the best strategies
in the game[3], and Pavlov which has been
shown to be an excellent strategy in more recent
literature[7,8,9]. In looking at this problem, we
were not concerned with which particular
strategy was superior. After all, to use the game
as a model of behavior in complex systems, it is
unlikely that an actor’s behavior can be neatly
summarized as perfectly fitting the Tit for Tat
model, the Pavlov model, or any other
deterministic model. Even those models that
introduce randomness and probability are not
capturing the essence of the question. Indeed,

the behavior of decision makers may not be
accurately modeled by a deterministic strategy,
but neither can their decisions accurately be
explained as “random” or “probabilistic.”
Instead of searching for a single strategy to
accurately capture complex and situationally
dependent behavior, we are interested in the
traits of those strategies which have proven to
be highly effective in the past. Isolating those
traits facilitates the development of a general set
of strategies which all should perform well.

My hypothesis is that superior strategies have
two traits in common. First, they can defend
against defectors, and second, they can exploit
the advantages of mutual cooperation with other
superior players. Both the Tit for Tat and Pavlov
strategies mentioned before have these traits. In
this paper, a genetic algorithm evolves strategies
from five different initial populations. By testing
the behavior of those evolved populations in the
presence of defectors and cooperators it can be
shown in this study that they perform identically
to the Tit for Tat and Pavlov strategies. It
follows that superior strategies, as discovered
through genetic algorithms, share the two
behavioral traits of the hypothesis.



2 The Prisoner’s Dilemma
The Prisoner’s Dilemma is a decision model.
Anecdotally described, two people, indicated
here as player 1 and player 2, are arrested for
espionage and placed in separate interrogation
rooms. Each player has the option to cooperate
with his peer, or to defect against him.  If both
players cooperate (C), they are rewarded with a
shorter sentence of length R, while if both defect
(D), they receive a penalty P. If one player
defects and the other cooperates, the defector
receives the best payoff (or temptation payoff) T
for exploiting his opponent. The opponent is
punished with the sucker payoff S, the worst
possible outcome [11]. Here we declare
[R,S,T,P] = [3,0,5,1]. The payoff matrix for this
game, indicating the points received by each
player in each situation, is shown in figure 1
(scores listed as [player 1, player 2]).

Player 1
Cooperate Defect

Cooperate 3,3 5,0

Pl
ay

er
 2

Defect 0,5 1,1

Fig 1: Payoff Matrix for the Prisoner's Dilemma

Nash Equilibrium describes what move each
player will make to maximize her score based on
correct assumptions about the other player's
actions. In the prisoners' dilemma, regardless of
what one player does, the other player will be
better off defecting. If player 1 cooperates,
player 2 will get 5 points for defecting instead of
3 for cooperating. If player 2 defects, player 1 is
still better off to defect as well, giving him a
score of 1 instead of 0. Each player will use this
logic, resulting in a Nash Equilibrium of Defect,
Defect.

If both players were to change their moves to
Cooperate, they each would triple their score.
Another approach to analyzing game theoretic
problems is the concept of Pareto Efficiency. A
solution is Pareto Efficient if there is no other
solution that makes one player better off without
making the other player worse off. In the case of
the Prisoner’s Dilemma, mutual cooperation is
the Pareto Efficient solution.

If players met and played several games in a row
(the iterated Prisoner's Dilemma), the Nash
Equilibrium of mutual defection becomes
increasingly inefficient. If individuals are able to
remember some set of prior games with their
opponent, then they can each develop a more
complicated strategy to maximize their score.

Some strategies have no advantages over the
single game. A player who cooperates regardless
of previous behavior (AllC) or who always
defects (AllD) will score no better than their
memory-less counterpart. Much research
suggests, however, that the Tit For Tat  (TFT)
strategy is very successful. This strategy simply
states that a player should repeat the opponent’s
move of the previous round. In earlier research,
TFT has been shown to outperform most other
strategies [2]. Another strategy shown to
perform well against a wide range of opponents
is the Pavlov strategy. This strategy, also known
as Win Stay Lose Switch or Simpleton,
cooperates when rewarded for cooperating or
punished for defecting, and defects otherwise. In
a memory-one system, where players can
remember their own move and their opponent’s
move from the previous game only,  Pavlov
players would cooperate on a history of mutual
cooperation and mutual defection. Since they are
rewarded with a score of 3 for mutual
cooperation, Pavlov players continue to
cooperate. With a history of DD, players will
also choose too cooperate in the next round
since they had been punished with a low score of
1. On the other hand, Pavlov players would
defect on a history of DC since they had just
been rewarded with the best score of 5 points for
defection, and would also defect with a history
of CD since they had just been severely
punished with a score of 0 for cooperating. This
strategy was shown to perform as well or better
than any other strategies in the memory-one
iterated Prisoner’s Dilemma [9].

The TFT and Pavlov strategies have been widely
studied. What features do they have in common
that makes them consistently competitive? Both
are able to use mutual cooperation, the Pareto
Efficient solution, to maximize their score, and
both are able to defend themselves from
receiving Sucker payoffs from a defector. This



research searches for these two traits in evolved
populations.

3 The Genetic Algorithm
Genetic algorithms lend themselves well
studying strategies in the prisoner’s dilemma.
Each player is represented by its strategy. In the
memory-three game used in this study, each
player’s strategy must address sixty-four
possible histories. We use the set of moves to
create a 64 bit string which represents each
player in the algorithm. Table 1 shows string
position, the history it represents, and a sample
strategy.

After calculating fitness, which is described in
the next section, this study implements roulette
wheel selection, also called stochastic sampling
with replacement [4]. In this stochastic
algorithm, the fitness of each individual is
normalized. Based on their fitness, individuals
are mapped to contiguous segments of a line,
such that each individual's segment is equal in
size to its fitness. A random number is generated
and the individual whose segment spans the
random number is selected. The process is
repeated until the correct number of individuals
is obtained.

Table 2 shows a sample population with
calculated and normalized fitness. Figure 2
shows the line with selection probability for ten
individuals using a roulette wheel
implementation. Individual 1 has a normalized
fitness of approximately 0.20 which gives it a 1
in 5 chance of being selected. Individual 10 has
the lowest fitness, with a normalized value of
0.02. If an individual had a fitness of zero, it
would have no chance of being selected to
propagate into the new population. Random
points are selected on this line to select
individuals to reproduce. Children's
chromosomes (strategies) are produced by single
point crossover at a random point in the parent's
chromosome.

The mutation rate was 0.001 which produced
approximately one mutation in the population

per generation, and the recombination rate was
set at 0.8.

4 The Simulation
Simulations in this study utilized a genetic
algorithm to evolve strategies for the Prisoner’s
Dilemma. Each simulation began with an initial
population of twenty players represented by
their strategies.

Several terms are used in this section. A game
refers to one “turn” in the Prisoner’s Dilemma.
Both players make simultaneous moves, and
each are awarded points based on the outcome.
A round is a set of games between two players.
Rounds in this study are 64 games long.  A cycle
is completed when every player has played one
round against every other player.

To determine fitness, each player was paired
with every other for one round of 64 games.
Players did not compete against themselves.
Since there are sixty-four possible histories, this
number of games ensures that each reachable
history is visited at least once. After each game,
the players’ scores are tallied and their histories
are updated. Players maintain a performance
score which is the sum of the points that they
receive in every game against every player. The
maximum possible performance score is 6080: if
a player defected in every game and his
opponents all cooperated in every game he
would receive 5 points X 64 games X 19
opponents. For a player who is able to mutually
cooperate in every game, the performance score
would be 3,648 (3 points X 64 games X 19
opponents).

After a full cycle of play, players are ranked
according to their performance score, and
selected to reproduce. Recombination occurs,
children replace parents, and the cycle repeats.

At the end of each generation, the total score for
the population is tallied. This value is the sum of
the scores of all members in the population.



String Position Represented History Move String Position Represented History Move

0 CCCCCC C 32 DCCCCC D
1 CCCCCD D 33 DCCCCD C
2 CCCCDC D 34 DCCCDC D
3 CCCCDD D 35 DCCCDD D
4 CCCDCC C 36 DCCDCC C
5 CCCDCD C 37 DCCDCD C
6 CCCDDC C 38 DCCDDC D
7 CCCDDD D 39 DCCDDD D

8 CCDCCC C 40 DCDCCC D
9 CCDCCD D 41 DCDCCD C
10 CCDCDC D 42 DCDCDC C
11 CCDCDD D 43 DCDCDD C
12 CCDDCC D 44 DCDDCC C
13 CCDDCD D 45 DCDDCD D
14 CCDDDC C 46 DCDDDC D
15 CCDDDD C 47 DCDDDD C

16 CDCCCC C 48 DDCCCC C
17 CDCCCD C 49 DDCCCD D
18 CDCCDC D 50 DDCCDC C
19 CDCCDD C 51 DDCCDD C
20 CDCDCC C 52 DDCDCC C
21 CDCDCD D 53 DDCDCD C
22 CDCDDC D 54 DDCDDC D
23 CDCDDD C 55 DDCDDD D

24 CDDCCC C 56 DDDCCC C
25 CDDCCD C 57 DDDCCD C
26 CDDCDC D 58 DDDCDC D
27 CDDCDD C 59 DDDCDD D
28 CDDDCC D 60 DDDDCC C
29 CDDDCD C 61 DDDDCD C
30 CDDDDC C 62 DDDDDC D
31 CDDDDD D 63 DDDDDD C

Table 1:  The table above shows the strategy for a randomly generated player. The corresponding
64 bit string used to represent this strategy in the algorithm is

CDDDCCCD CDDDDDCC CCDCCDDC CCDCDCCD DCDDCCDD DCCCCDDC CDCCCCDD CCDDCCDC



Individual 1 2 3 4 5 6 7 8 9 10
Fitness 27 22 18 15 13 12 9 8 4 3
Normalized Fitness 0.20 0.17 0.14 0.11 0.10 0.10 0.07 0.06 0.03 0.02

Table 2: Sample Population showing fitness and normalized fitness for each individual

Figure 2: Continuous line divided for the 10 individuals of the sample population. Random
points generated along this line determine which individuals will be selected for reproduction.

While the maximum score for an individual is
6080, the maximum score for a population of 20
cannot be 20 times that. For one individual to
score the maximum, all others must score very
low. The highest cumulative score achievable in
an individual game is 6, when both players
receive a score of 3 for mutual cooperation.
Mutual defection would have a total game score
of 2 (1 point each), and mixed plays, with one
cooperator and one defector, have a game total
of 5 (5 for the defector plus 0 for the
cooperator). Thus, the highest score that a
population can achieve is 72,960 (3 points X 64
games X 19 opponents gives 3,648 per player X
20 players total). In the end,  the fitness of a
population is measured by what percentage of
the highest possible score is achieved. A
population with a total score of 63,480, for
example, would have a population fitness of
50% (63,480 / 72,960).

In these experiments, each evolutionary
simulation ran for 200,000 generations. This
gave plenty of time for genomic stabilization
without requiring too much computing time.
Results for much longer selected simulations (up
to 4,000,000 generations) were not significantly
different.

5 Methodology
To test whether or not a population had each of
the two traits described in the hypothesis,
players’ behavior in these experiments is
compared to the behavior of both the Tit for Tat

and Pavlov populations. A straight comparison,
however, would not yield productive results;
through the evolutionary process, noise is
introduced into any population, even those well
evolved.

Consider a population that has evolved Tit for
Tat like behavior. That population is likely using
only one quarter to one third of its encoded
genes because many of the possible histories are
not achievable by a Tit for Tat player (i.e.
DCDCDC where a  cooperating player never
defends against the defecting opponent). This
means that an individual might look very little
like an unevolved Tit for Tat player. This noise
in the gene can show up in simulations because
each player starts with a randomly generated
initial history. Thus, it is possible for a Tit for
Tat player to start with and visit several
strategies which would not otherwise be
reachable in play alone. If a noisy Tit for Tat
player winds up with an initial history that visits
a “corrupted” gene (which is not unlikely), play
can take a very non-Tit for Tat like path by
playing though these genes which are less
affected by selection. Thus noise is added into
the Tit for Tat and Pavlov populations when
using them for comparison to discount the effect
of noise in the evolved populations and focus in
on the actual evolved behavior.
Five distinct populations were used to compare
behavior before and after evolution. Tit For Tat
and Pavlov, as discussed previously, were the
two control populations for this experiment.
Both have the inherent ability to exploit mutual



cooperation and defend against defectors. Three
other populations were respectively comprised
of AllC players, of AllD players, and of
independently randomly initialized players.

To measure the performance of populations, the
average fitness over the last 10,000 generations
of each simulation was studied. Starting with the
five initial populations, each was evolved for
200,000 generations. This evolution was
simulated several hundred times for each initial
population.

Significance was calculated by the standard 2
tailed t-test for data sets with unequal variance.
Each population was compared to the Tit for Tat
and Pavlov controls.

6 Results
Recall the hypothesis: Evolved populations of
players develop 1) the ability to defend against
defectors, and 2) the ability to take advantage of
mutual cooperation. Below, the results are
outlined which support this hypothesis.
Statistical data generated for these results is
contained in Table 3.

After a period of evolution and play as described
earlier, the average performances of the five
populations were statistically equal. The natural
question to ask is whether or not this equality
came about as a result of “random drift” of the
populations, or because they were evolutionarily
driven in that direction. Random drift occurs
when strategies are recombined and mutated
without selection. Since there is no pressure to
perform, there is no meaning associated with the
genomic makeup of a population after evolution.
Each specific gene has occurred simply by
chance mutation or recombination, and the
performance of such a population is generally
low. By turning off the selection mechanism in
the genetic algorithm, results for a random drift
population were generated. The evolved
populations all performed well above the level
of the random drift population, indicating that
they exhibit evolutionarily preferred traits
(shown in Table 3). The next step is to test
whether or not the improved performance is due

to the presence of the traits described in the
hypothesis, namely, if they are defensive and
cooperative abilities.

The first experiment looks for the ability to
defend against defectors. In the experiment, the
five unevolved, initial populations were mixed
with a small set of AllD players. Fitness of those
populations was calculated over the first 10,000
generations immediately following inoculation.
Both Pavlov and TFT performed well, with
scores around 80%. Neither Random, AllC, nor
AllD came near this level. By the standard t-test,
all were significantly lower than both Pavlov
and TFT with p = .01.

The same experiment was performed with the
five populations after evolution. After 200,000
generations, the populations were mixed with a
small group of AllD players. Fitness was
calculated over the next 10,000 generations.
Looking at the average fitness of all five
populations, it was found that there was no
statistical difference in performance among them
with p=.01. Additionally, comparing these
results to the performance of unevolved Tit for
Tat and Pavlov players, there was no statistical
difference. Additionally, there was no statistical
difference between performance of the
inoculated populations, and the uninoculated
evolved populations, indicating that defectors
had no effect on performance of evolved
populations.

The second part of the hypothesis predicts that
populations evolve the ability to cooperate with
other cooperators. Repeating the same
experimental structure above, the five unevolved
populations were mixed with a small set of AllC
players. Tit for Tat and Pavlov again performed
at nearly 80% if the maximum fitness, as did the
initial population of AllC players. AllC players
always cooperate by their nature. In an initial
population made up entirely of AllC players,
mutual cooperation is the norm.  Introducing
more AllC players to that initial population
obviously does not change it.  The prevalence
of mutual cooperation explains the excellent
performance of the unevolved AllC population.



Unevolved Populations inoculated with AllC

Tit For Tat Pavlov Cooperate Defect Random

Mean 0.7954 0.7999 0.7873 0.8784 0.4384

t-test with unevolved Tit for Tat 1 0.8423 0.7179 1.9440E-05 1.9420E-45

t-test with unevolved Pavlov 0.8423 1 0.5659 3.2140E-05 4.6290E-48

Unevolved populations inoculated with AllD

Tit For Tat Pavlov Cooperate Defect Random

Mean 0.8138 0.8240 0.7348 0.8825 0.4444

t-test with unevolved Tit for Tat 0.3974 0.2022 0.0077 7.3307E-06 1.3276E-44

t-test with unevolved Pavlov 0.5153 0.2740 0.0035 1.1989E-05 3.3702E-47

Evolved populations with no inoculation

Tit For Tat Pavlov Cooperate Defect Random Random Drift Population

Mean 0.7990 0.7970 0.8189 0.8045 0.8206 0.7517

t-test with unevolved Tit for Tat 0.8768 0.9427 0.2899 0.2733 0.2733 0.0091

t-test with unevolved Pavlov 0.9667 0.8961 0.3837 0.3603 0.3603 0.0029

t-test with uninoculated Tit for Tat 1 0.9310 0.3681 0.3459 0.3459 0.0046

t-test with uninoculated Pavlov 0.9310 1 0.3122 0.2940 0.2939 0.0047

Evolved populations inoculated with AllC

Tit For Tat Pavlov Cooperate Defect Random

Mean 0.8145 0.7980 0.7977 0.8029 0.8297

t-test with unevolved Tit for Tat 0.3975 0.9117 0.9190 0.7364 0.1147

t-test with unevolved Pavlov 0.5115 0.9285 0.9163 0.8943 0.1622

t-test with uninoculated Tit for Tat 0.4911 0.9628 0.9518 0.8618 0.1562

t-test with uninoculated Pavlov 0.4277 0.9678 0.9770 0.7876 0.1228

Evolved populations inoculated with AllD

Tit For Tat Pavlov Cooperate Defect Random

Mean 0.7981 0.8019 0.8015 0.8084 0.8248

t-test with unevolved Tit for Tat 0.9063 0.7837 0.7904 0.5696 0.1878

t-test with unevolved Pavlov 0.9345 0.9329 0.9455 0.7087 0.2561

t-test with uninoculated Tit for Tat 0.9690 0.9019 0.9132 0.6801 0.2459

t-test with uninoculated Pavlov 0.9619 0.8335 0.8421 0.6106 0.2019

Figure 3: Statistical Results

Compared to the controls and the AllC
population, both Random and AllD populations
performed significantly worse, at about 74% and
44% fitness respectively.

After 200,000 generations of evolution, the
populations were again mixed with a small set of
AllC cooperators. As was the case when

inoculated with a defector, the fitnesses of the
five evolved populations were statistically
indistinguishable from one another. Comparing
the performance of the evolved populations with
the performance of the unevolved Tit for Tat and
Pavlov populations, there was again no
difference among populations. Finally, the
performance of the inoculated population was



compared to that of the un-inoculated population
and they were not statistically different.

7 Discussion
These results lead to several conclusions. Our
first experiment shows that defectors effect all
five of the evolved populations in the same way.
They react identically, but does this necessarily
indicate that they all have a defensive ability?
Since the populations which were unable to
defend against defectors a priori exhibit that
behavior after evolution they must evolve that
ability over time.

The second set of conclusions that can be drawn
are those regarding mutual cooperation. Results
here show that evolved populations are able to
cooperate among themselves since they perform
the same as the control populations in the
presence of cooperators. Further, once can
conclude that populations exhibit this behavior
even without the experimental conditions, since
there is no difference between performance in
the natural, evolved environment and
performance in the presence of pure cooperators.

With the results outlined above, it follows that in
this experiment, evolved populations performed
equivalently to Tit for Tat and Pavlov.
Specifically, these experiments show that
evolved populations are able to fend off
defectors and mutually cooperate with other
evolved individuals. Since these populations did
not have such abilities a priori, it follows that
evolution introduced this behavior over time.

Some preliminary simulations have been run to
study this phenomenon in probabilistic
strategies. Initial results show no difference in
results between   deterministic and probabilistic
populations. A more thorough study would be
useful in generalizing or limiting the results
described here.
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