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Abstract: - We assesghe selectionof stratgy parameterdor Differential Evolution on a setof test problems.
Theoriginal algorithmis analyzedwith respecto its performancalependingon the choiceof stratgy parameters.
Althoughempiricalrulesareprovidedin theliterature[1], choosingthe properstratgy parametergor Differential

Evolutionis moredifficult thanexpected.
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1 Intr oduction

Differential evolution (DE) belongsto the class of
stochasticoptimization algorithmswhich addressthe
following searchproblem:Minimize anobjective func-
tion which is a mappingfrom a parametenectorz €
R™ro R. DE is characterizethy self-oiganizationmu-
tation, crosseer, selection,and empirical selectionof
stratgy parameter§l].

As statedin [1], stratgyy parametergor DE are not
difficult to choose However, therulesfor choosingcon-
trol parametergiven in this referenceare not general
andthereforenot suitablefor practicalapplicationsWe
try to devise moregeneralrulesby studyingthe perfor
manceof the stratgy on a setof testproblems. The
sphereandRosenbrockunctionsrepresentinginimodal
problemsaswell asthe Rastriginand modified Rosen-
brock functionsrepresentingnultimodal problemsare
tested.

Although there are only three stratgly parameters,
thefollowing applicationof DE on severaltestfunctions
shawvsthatfinding theglobaloptimumis sensitve to the
choiceof thesecontrolparameters.

2 The DE Algorithm

Onesetof D optimizationparameters;alledanindivid-
ual, is representethy a D-dimensionalvector A popu-
lation consistof N P D-dimensionaparametevectors
ziq, 1 =1,2,..., NP for eachgeneratiorG.

Thethreeoperationgnutation,crosseer, andselec-
tion are describedin the following, seealso[1] for a
moredetaileddescription:

Mutation:
For eachtamgetvectorz; ;, amutantvectoris generated
accordingo v; g+1 = zr1,¢ + F - (2,6 — Tr3,g)With
randomlychosenindexesry,re,r3 € {1,2,..., NP}.
Note thatindexes have to be differentfrom eachother
andfrom therunningindex . Therefore the numberof
parameterectorsin a populationmustbe at leastfour.
F is arealandconstanfactore [0, 2] thatcontrolsthe
amplificationof the differencevector(z,2.¢ — z,3,c)-

Notethatthe smallerthedifferencesetweenparam-
etersof parentry andrs, the smallerthe differencevec-
tor and thereforethe perturbation. That meansif the
populationgetscloseto the optimum,the steplengthis
automaticallydecreasedrhisis similarto theautomatic
stepsizecontrolfoundin standardevolution strateies.

Crosswer:
Thetamgetvectoris mixedwith themutatedvectorusing
thefollowing schemeto yield thetrial vectoru; g1 =
(u15,G41, ¥2i,G4+1, --- ,UDi,G+1) Where

Uj3,G+1 = {

for j = 1,2,...,D. r(j) € [0,1] is the j** evalu-
ation of a uniform randomnumbergeneratar CR is
the crossweer constante [0,1]. CR = 0 meansnho
crosseer. rn(i) € (1,2,...,D) is arandomlycho-
senindex which ensureshat u; ¢4+1 getsat leastone
elementfrom v; g41. Otherwiseno new parentvector
would be producedandthe populationwould not alter.
Selection:

A "greedy” selectionschemsds used:If andonly if the
trial vectoryieldsabettercostfunctionvaluecompared
to the parametewectorz; g, is it acceptec@sanew par

if (r(j) < CR)orj=rn(i)
if (r(j) > CR)andj # rn(7)

Vji,G+1
Lji,G



entvectorfor the following generationG + 1. Other
wise, the tamget vectoris retainedto sere asa parent
vectorfor generationG + 1 onceagain.

Therearethreestratgy parametersltogether:N P:
Numberof memberdn a population,F': Amplification
factorof thedifferencevector C R: Cross@er constant.

Other Variants of DE:

Thereareseveralvariantsof DE which canbeclassified
usingthenotation[1] DE/z/y/> wherez specifieghe
vectorto be mutatedy is thenumberof differencevec-
torsused,andz denoteghecrosswer scheme.

z canbe’rand’ (randomlychoserpopulationvector)
or 'best’ (the bestvectorfrom the currentpopulation).
Since we useonly one differencevector y is onein
the describedscheme The currentvariantfor z is 'bin’
whichmeansrosseer dueto independenbinomialex-
periments. Using this notation, the basic DE-stratgy
canbewrittenas: DE /rand/1/bin. Anotherpossibil-
ity is the methodDE /best/2/bin, wherewe have the
following mutantvectorv; g1 = Zpest,a +F - (2r1,6 —
Tro,G + Tr3,G — 3:1“4,6‘)-

3 Performanceon TestFunctions

For eachtestat least20 runs were made,and a maxi-
mumof Gmee = 10* generationsvereallowed unless
otherwisestated.For all functions,the terminationcri-
terionis |fopt — fact| < € Where f,; is the optimum
functionvalue, f,. is the actualfunction value,ande
is the precisionvalue. Thelnitial ParameteRangel PR
anda terminationcriterionweredefined.Initial param-
etervaluesweredravn randomlyfrom the IPR. For an
initial normal distribution with varianceo? andexpec-
tation value¢, we write IPR, = [¢ £ o]|. For auni-
form distribution within the limits —¢ and&, we write
IPR =[-¢¢].

3.1 Sphere Function

The D-dimensionalsphereis definedas foppere(z) =
E£1($z‘ -1)%

2-dimensionalSphere:

Wessete = 1071 andIPR,, = [-5 £ 1]. Notethatthe
IPR, is definedsuchthatit did not centeraroundthe
minimum(1; 1).

For the first test,we setF' = 0.4, CR = 0.5, and
NP = 15. Theresultwasthatthe vectorsdid notreach
the minimum but got stuck on their way to the mini-
mum, meaninghatthey gotcloserto eachotherandthe
differencevectorfor the perturbationdecreased Note

thatif we choosean I PR thatcentersaroundthe mini-
mum, thevectorsdo notgetstuck,sincein this casethe
populationapproachethe minimumfrom all directions
anddoesnot corverge beforearriving atthe minimum.

To avoid premature’convergence”, the step size
needsto be increased. Therefore,in the next testa
higheramplificationfactor F' = 0.6, waschosen With
othersettingsunchangedthe minimumwasfoundin all
testruns.

5-dimensionalSphere:

C R wassetto arelatively highvalue,CR = 0.9. That
meansthat on the average90% of the elementsof the
trial vector were identicalto thoseof the mutantvec-
tor, which implied a high diversity The other param-
eterswere chosenas follows: F = 0.6, NP = 15,

e = 10719 IPR, = [0 &+ 1]. The minimum was not
foundwith thesesettings.It seemghatdueto the high
crosseer constantthe pathlengthincreasedvithout a
significantly higher speedto approachthe minimum.
With eachgeneratiorthe individuals got closerto each
otherandcorvergedbeforethey reachedhe minimum.

On the other hand,if C'R is chosentoo small, DE
needganoregenerationso find the minimumor it might
even not find the minimum at all. If, for instancethe
crosswer parameteiis setto CR = 0, only one ele-
mentof avectoris altered.This meanghata population
membercanmove only parallelto theaxes. Therestric-
tion to certainmoving directionsdecreasethe corver-
gencespeed. Moreover, thereare functionswherethe
minimum cannotbe reachedwith only vertical or hori-
zontalsteps.

Fromthe first testrunsfor the 2-dimensionakphere
it becameclearthat F' mustnotbesmallerthanacertain
valuein orderto find the minimum. Thefollowing tests
shavedthatthis valuehighly depend®n the costfunc-
tion. Hence,no exactrule for thelower boundof F can
be given for eachfunction, but in mostcasest should
beatleastlargerthan F' = 0.4. Neverthelessit is inter-
estinghow the numberof function evaluationschanges
if the amplificationfactor F' is increased.The stratgy
parametersveresetasfollows: e = 1071°, NP = 15,
andCR = 0.5, IPR, = [0 £ 1]. A smallerampli-
fication factor resultsin a smallernumberof function
evaluationsn fe andin anincreasingisk notto find the
minimum.

Next, we study the influenceof the crosseer con-
stantCR onnfe. We alreadyknow that, at leastfor
the sphereatoo high crosseer constanthasthe effect
that the minimum is not found. The samesettingsfor



the 5-dimensionakpherewere usedasbeforebut with
F = 0.6 andC R betweerD.0 and0.85 in stepsof 0.05.
In this casethe solutionwasfound evenif CR is setto
zero. On the averagefewer function evaluationswere
usedfor a highercrosseer constantBut again,therisk
thattheminimumis notfoundincrease$or alargerCR.

The dependencef nfe on the stratgy parameter
NP was testedusing again the 5-dimensionalsphere
cost function with the samesettingsas above, except
CR = 04, and F = 0.6. This time we also com-
parethe behaior of DE/best/2/binwith the behaior
of DE/rand/1/bin.n fe increasedinearly asa function
of N P andthe numberof function evaluationsfor one
memberof a populationremainsconstant(figure omit-
teddueto spacdimitations). Neverthelessthetotaln fe
increaseslueto NP. Notethatif thereareonly 5 vec-
torstheminimumis notfoundin everytestrun. It seems
that in this casethe diversity of the populationis too
small.

Comparingto DE/rand/1/bin, DE/best/2/binneeds
almost the same number of function evaluationsto
find the minimum exceptfor a small populationwhere
DE/best/2/bin corverged slower than DE/rand/1/bin.
However, in this caseit still finds the minimum in
95% of the runs whereasDE/rand/1/bin was suc-
cessfulin only 25%. Since the perturbationvec-
tor of DE/best/2/binis on the averagelarger than for
DE/rand/1/binasmalleramplificationfactoryieldsbet-
ter resultswith DE/best/2/bineven for larger popula-
tions.

25000

DEfrand/1/bin (CR=0.4,F=0.6 dim=20)
|&— DElbest/2/bin (CR=0.4, F=0.6, dim=20)
ONo solution in 5% (20 trial runs)
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Number of Function Evaluations
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5

Figure 1: 20-dimensionalsphere: nfe as a func-
tion of the parameterNVP. Note thatfor NP = 5,
DE/rand/1/bindoesnot find the minimum.

20-dimensionalSphere:
Finally the 20-dimensionalspherecost function was
usedfor several testrunswith varying stratgy param-

eter NP. Fig. 1 shavs that DE/best/2/bintakes mary

more function evaluationsthan DE/rand/1/binfor the
samesize of a population. However, DE/best/2/bin
provesto bethe bettervariantfor con/emgenceusinga

small populationsize. DE/rand/1/bindid not find the
globalminimumin all 20testrunsfor NP = 5 whereas
DE/best/2/birfoundit with probability 95%.

Summary for the Sphere function:

Tah 1 shaws the bestresultsfor the spherefunction.
The amplificationfactorandthe crosseer constantor
the bestsolutionsdid not changesignificantlyif we in-
creasedhedimensioror thesizeof thepopulation.This
meanghatwe cankeepthevaluesof F andC R for dif-
ferentsettingsof D and N P.

We concludefor the spherefunction: The amplifi-
cation factor F' should not be smallerthan a certain
valueto avoid thatthe populationcorvergesbeforear
riving at the minimum. On the otherhand,the amplifi-
cationfactor F' shouldnot be chosentoo large because
the numberof function evaluationsincreasess F' in-
creases.The cross@er constant” R shouldnot be too
large to avoid that the perturbationsget too high and
theconvergencespeedlecreaseddowever, asmallCR
decreasesliversity and might causethe stratgy to get
stuck.Forthe samesizeof thepopulationDE/best/2/bin
and DE/rand/1/binperform similarly. However, for a
small populationit is morelikely to find the minimum
usingDE/best/2/birinsteadof DE/rand/1/bindueto the
improved diversity of thetrial vectors. The bestresults
wereachieved with DE/best/2/bin.

| DE-stratgy | D [NP|[CR| F | nfe |
best/1/bin [ 2 | 8 [0.4]0.45] 306 +46
best/1/bin | 5 | 8 | 0.4| 0.45| 834+ 235
best/2/bin || 20| 10 | 0.4 | 0.45| 4634 & 639

Tablel: Bestresultsfor the sphergunction.

3.2 Rosenbiock’s Function

The D-dimensionaRosenbrocls functionis definedas
frosen(w) = Zz’D:_ll[lOO ’ (1'12 - $i+1)2 + (:EZ - 1)2]
2-dimensionalRosenbiock’s function:
An IPR = [—10; 10] wasusedandaftersometrials we
fixed the stratgy parameterso F = 0.9, CR = 0.9,
andN P = 15.
Test runs for the 2-dimensionalRosenbrockfunc-
tion and a uniform distribution in the region [-2 <



z < —1;1 < y < 2] revealedthat DE/rand/1/binper

forms worsethan DE/best/2/bin. The parametersvere
setto NP = 15, F = 0.9, CR = 0.9. Note that
sincethe perturbationvectorfor DE/best/2/binconsists
of two differencevectorsthe stepsizeis largerthanfor

DE/rand/1/bin.For this reasoronecanexpectthatn fe

is lower when choosinga smalleramplificationfactor
F. And indeed,n fe getssmallerwith F = 0.6 in our

tests.

For all thefollowing testruns,/ PR, = [0+ 0.1] and
e=10"19,

5-dimensionalRosenbiock’s function:

For the 5-dimensionalRosenbrockfunction, we used
NP =15, CR = 0.9, and F wasvaried. With increas-
ing F' themeannumberof functionevaluationsbecame
larger For F' < 0.7 theglobalminimumwasnot found

(atleastnotwithin G4, - NP = 150 000 functioneval-

uations). Thereis the sametendeng asfor the sphere.
However, thelower boundfor F wasat F' = 0.7, com-
paredwith F' = 0.45 for the sphere. This shaws the
difficulty whenchoosingF' for a real problem. We do

not wanta high amplificationfactor sincethis meansa
highnumberof functionevaluations.Ontheotherhand,
if we choosea small F' therisk increaseshatthe mini-

mumis notfoundatall.

Next, C'R is variedandthe amplificationfactoris set
to F = 0.9. nfe decreasefor growing CR. If CRis
large the diversity of the populationis relatively high.
Here,a high diversityimprovedthe conergencespeed.
Note thatfor this testfunctionthe globalminimumwas
notfoundfor CR = 0 sincefor Rosenbrock‘sunction
it is not possibleto find the global minimum with only
stepsthat are parallelto the axes. As opposedto the
spherdunction,CR = 1 yieldsa solution.

We compareDE/rand/1/birwith DE/best/2/birusing
F = 0.9 andCR = 0.9. Theresultsweresimilar to
the onesfor the sphergunction. Here,DE/best/2/binis
worseif the populationsizeis high (aboutthreeor more
times D). For a small population(aboutone to two
times D) DE/best/2/binis betterthan DE/rand/1/bin.
Sincefor DE/best/2/birthe perturbatiorvectorconsists
of two differencevectors,the diversity is highercom-
paredto DE/rand/1/bin.Hence,we getaboutthe same
diversity like for DE/rand/1/binwith a smallerpopula-
tion size. The smallerthe populationsize, the smaller
n fe sincefor eachmembeof apopulationandfor each
generatiora functionevaluationis needed.

Summary for Rosenbrock's function:

Tah 2 shawvsthe bestresultsfor Rosenbrock'sunction.

Notethatall of themwereachiezedwith DE/best/2/bin.
Theresultscanbe summarizedasfollows: For Rosen-
brock‘sfunctionthebehaior of n fe asafunctionof F,

CR, and NP is similar to the behaior for the sphere
function. However, the valuesof the parametersarenot

thesameg.g.theamplificationfactormustnotbelower

thanaboutF = 0.7 for Rosenbrock‘sunctionwhereas
for thesphergunction F' = 0.45 is still possible.

| DE-stratgy | D [NP[CR| F | nfe |
best/’2/bin || 2 | 10 | 09| 0.6] 627+ 80
best/2/bin || 5 | 10 | 0.9 | 0.6 | 3496 + 761
best/2/bin || 20 | 15 | 0.9 | 0.6 | 111961 + 22677

Table2: Bestresultsfor Rosenbrock'sunction.

3.3 Rastrigin’s Function
Themultimodal D-dimensionaRastriginfunction

D

frast(xz) = (D -10) + [Z (ac? - 10 cos(27rx,~))]

=1

is testedusing/ PR = [—600; 600] ande = 106.

In the first testrun with CR = 0.5, NP = 15,
and F = 0.5, the global minimum was always found
and the averagenumberof function evaluationswas
nfe = 938 + 70 whenusing DE/best/2/bin. For the
samesettingsDE/rand/1/binfound the global optimum
only in 95% of therunswith anfe = 1179 + 91. As
long as the stepsize is high enough(larger than the
smallestdistancebetweentwo adjoininglocal minima)
it is possibleto adwanceto the global minimum. If the
stepsizewastoo smallthe populationcould not escape
alocal minimum.

For higher valuesof F' the chanceof finding the
global minimum increasesincedueto the larger per
turbationvector the populationis ableto escapdocal
minima. If we considerthe numberof the successful
testruns,alarge C'R doesnot differ muchfrom a small
CR. Forasmall F (e.g. F = 0.3), the bestresults
wereachieved with DE/best/2/birandthe worstresults
with alargeC' R. Themostimportantsteeringparameter
turnedout to be the sizeof a population. If we choose
NP = 40 the global minimum was found in almost
every testrun. Even for relatvely small amplification
factorsthe global minimum was still found with large
populations.



3.4 Modified Rosenbiock Function

Theoptimizationof themultimodal2-dimensionamod-
ified Rosenbrockunction

fmodros(iﬂ) = 100.0 - ($2 — 1‘%)2 + (1_0 _ 1'1)2 + a(m)
where
a(@) = 74—400-exp(10(—(z1+1.0)* = (2 +1.0)%))

is initialized with TPR = [-2;2] anditise = 1075. A
smallersize of the populationis worsewith respecto
theglobaloptimizationbehaior. However, alarge pop-
ulationincreases fe. An amplificationfactor 7 = 0.9
performedbetterthan F' = 0.5. DE/best/2/binvasbet-
ter thanDE/rand/1/bin.If just onememberof the pop-
ulation getsto the areawherethe costvaluesarebelov
the costvaluefor thelocal minimumit will becomehe
bestvector For DE/best/2/birthe perturbatiorvectoris
addedto the bestvectorof the currentpopulation.This
meansthat the populationhasthe tendeng to move to
the globalminimum.

4 Choiceof Strategy Parameters

However, theapplicationof DE onseveraltestfunctions
shawved that the capability of finding the global mini-
mumandafastcornvergenceratearevery sensitve to the
choiceof the controlvariablesN P, F, andCR. Some
rulesof thumbfor their choicearegivenbelow.

Population Size N P:
Accordingto our experienceareasonablehoicefor the
populationsizeis betweenWP = 3-D andNP = 8-D.
Note, that NP must be at least4 for DE/rand/1/bin
and5 for DE/best/2/binrespeciiely to ensurethat DE
will have enoughmutually differentvectors.Thelarger
the population,the larger the probability of finding the
global minimum for multimodal functions. A larger
populationimplies a larger numberof function evalu-
ations,however.

Amplification Factor F':
F shouldnot be smallerthana certainvalueto prevent
prematurecorvergence.This valuedepend®n the cost
function and on the other stratgly parameterse.g. for
the spherefunction FF = 0.5 (CR = 0.5, NP = 15)
andfor Rosenbrock'dunction ¥ = 0.75 (CR = 0.9,
NP = 15). A larger F increaseghe probability for
escapinga local optimum (seeFig. 2). However, for
F > 1 the corvergencespeeddecreases.|t is more

difficult to converge for a populationwhenthe pertur
bation is larger than the distancebetweentwo mem-
bers. A goodinitial choicefor the amplificationfactor
is F' = 0.6. If onesuspectshatwith this settingonly a
local optimumis found,then F' shouldbeincreased.

Difference vector (F large)

Difference vector (F small)

Global optimum

Target vector Local optimum

Figure2: If F' is chosenoo smallit getsmoredifficult
to escapédocal optima.

Crosswoer ConstantCR:

A large CR often speedsup corvergence. However,

from a certain value upwards the corvergence speed
may decreaser the populationmay converge prema-
turely. This valuedependson the costfunctionandis

locatedin theregion CR = 0.9...1.0. A goodchoice
for the crosswer constanis avaluebetweenCR = 0.3

andCR = 0.9.

DE Variants:

DE/best/2/binseemsto be better than DE/rand/1/bin
with respecto both convergencespeedandglobal op-
timization. For DE/best/2/birthe perturbatiorvectoris

addedto the bestvectorof the currentpopulation. This
meansthatthe populationhasthe tendeng to move to

the local minimum. Whenthe membersof the popula-
tion cornvergeto alocal minimumthedifferencevectors
decreas@ndsodoesthe chanceo escapelocal mini-

mum.

Since for DE/best/2/bintwo differencevectorsare
addedto the tamget vector the amplification factor F
shouldbe generallysmallerthanfor DE/rand/1/bin. If
we have a populationof six individuals, 360 differ-
entperturbationvectorsare possiblefor DE/best/2/bin,
but only 30 for DE/rand/1/bin. This meansthat with
DE/best/2/bina lot more different trial vectorscanbe
generatechs with DE/rand/1/bin. In this way a larger
parameterangecanbe coveredfrom generatiorio gen-
eration.



5 Comparisonwith other Evolution Strategies

DE is comparedwith an evolution stratgy with Co-
varianceMatrix Adaptation(CMA-ES) [2] and with-
out CMA (ES). See[2] for the stratgy parameterof
the two evolution algorithms. The precisionvaluewas
(e = 10719) andresultsaresummarizedn Table3.

\ | DE | ES | CMA-ES|
Sph5D || 8.3-102+2.3-10° [ 8-10% | 7-10?
Sph20D || 4.6-103+6.4-10% | 3-10° | 3-103
Ros5D || 3.5-10°+0.8-10% [ 2-10° | 3-103
Ros20D || 1.1-10° +£0.23-10° | 10° 3104

Table3: Comparisorof differentoptimizationstratgies
onunimodaltestfunctions.

Thestartpointfor ESandCMA-ES wasz = 0. For
the spherefunction, /PR, = [0 &+ 1]. andfor Rosen-
brock'sfunction,IPR, = [0 £ 0.1].

Theresultsshaw thatthe DifferentialEvolution strat-
egy performssimilar to the CMA-ES and ES for the
spherecase However, DE provedto bethebettervariant
comparedo thesimpleESfor Rosenbrock'sunction.

The 2-dimensionalmodified Rosenbrockfunction
and Rastrigin function sere us to comparethe fre-
queng of finding the global minimum of multimodal
functions. Fifty testrunsweredonewith DE. The set-
tings of the stratgy parametergor DE, ES, CMA-ES,
andRandomsearchwereasfollows:

e DE for Rosenbrock's function: Gy.: = 3000,

IPR = [-22], CR = 09, F = 0.9, and
NP = 20.
e DE for Radtrigin's function: G, = 3000,

IPR = [-600;600], CR = 0.6, F = 0.4, and
NP =15.

e ESCMA-ES i = 2 parents,A = 10 children,
50000 function evaluations, and initial global
stepsized = 1072.

e Random search: 50000 functionevaluations.

DE with aprecisione = 10~ needednly 938 + 70
function evaluationsto reachthe goal for Rastrigins
functionand2292 + 293 for Rosenbrock‘sunctionre-
spectvely, asshavn in Table4.

DE performedmuchbetterthanthe other stratgies

with regard to the global optimization performance.

\ | Rastrigin2D | Mod. Ros.2D |

DE/best/2/bin 100% 50%
ES 37% 10%
CMA-ES 33% 7%

Randomsearch 0.1% 100%

Table4: Comparisorof differentoptimizationstratgies
with respecto the global optimizationperformance.

However, we shouldnote that thesegood resultswere
only achiered by trying severaldifferentsettingsfor the
stratgy parameters. The corvergencespeedand the
global optimizationbehaior depended lot on the pa-
rametersettings.

6 Summary and Conclusions

Tofind appropriatestratgy parameterd)E wasapplied
to severalunimodalandmultimodaltestfunctions.DE's

globaloptimizationperformancendcorvergencespeed
comparevell with ESandCMA-ES whengoodstrategy

parametergre chosen.However, it turnedout thatthe

performancef DE is very sensitve to the choiceof the

stratg@y parameters.
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