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CH - 8092Zürich
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Abstract: - We assessthe selectionof strategy parametersfor DifferentialEvolution on a set of test problems.
Theoriginal algorithmis analyzedwith respectto its performancedependingon thechoiceof strategy parameters.
Althoughempiricalrulesareprovided in theliterature[1], choosingtheproperstrategy parametersfor Differential
Evolution is moredifficult thanexpected.
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1 Intr oduction

Differential evolution (DE) belongs to the class of
stochasticoptimization algorithmswhich addressthe
following searchproblem:Minimize anobjective func-
tion which is a mappingfrom a parametervector ������

ro
�

. DE is characterizedby self-organization,mu-
tation, crossover, selection,and empirical selectionof
strategy parameters[1].

As statedin [1], strategy parametersfor DE arenot
difficult to choose.However, therulesfor choosingcon-
trol parametersgiven in this referencearenot general
andthereforenot suitablefor practicalapplications.We
try to devisemoregeneralrulesby studyingtheperfor-
manceof the strategy on a set of test problems. The
sphereandRosenbrockfunctionsrepresentingunimodal
problemsaswell astheRastriginandmodifiedRosen-
brock functionsrepresentingmultimodalproblemsare
tested.

Although there are only three strategy parameters,
thefollowing applicationof DE onseveraltestfunctions
showsthatfindingtheglobaloptimumis sensitive to the
choiceof thesecontrolparameters.

2 The DE Algorithm

Onesetof � optimizationparameters,calledanindivid-
ual, is representedby a � -dimensionalvector. A popu-
lationconsistsof �	�
� -dimensionalparametervectors�
��� ����������������������� �	� for eachgeneration .

The threeoperationsmutation,crossover, andselec-
tion are describedin the following, seealso [1] for a
moredetaileddescription:

Mutation:
For eachtargetvector �!�"� � , amutantvectoris generated
accordingto # ��� �%$�& �'�!( &)� �+*-,/.10 �
()2 � �	3 �!(54 � �76 with
randomlychosenindexes 8 &�� 8 2 � 8 4 �:9 �������������;� �	�=< .
Note that indexeshave to be different from eachother
andfrom therunningindex � . Therefore,thenumberof
parametervectorsin a populationmustbeat leastfour., is a realandconstantfactor �?> @ ����A thatcontrolsthe
amplificationof thedifferencevector 0 � ()2 � � 3 � ()4 � � 6 .

Notethatthesmallerthedifferencesbetweenparam-
etersof parent8 2 and 8 4 , thesmallerthedifferencevec-
tor and thereforethe perturbation. That meansif the
populationgetscloseto theoptimum,thesteplengthis
automaticallydecreased.Thisissimilarto theautomatic
stepsizecontrolfoundin standardevolution strategies.

Crossover:
Thetargetvectoris mixedwith themutatedvectorusing
thefollowing schemeto yield thetrial vector B �"� �%$�&C�0 B &D��� �%$�&E� B 2 ��� �%$�&��+�����F� BHG ��� �%$�& 6 where

B�I �"� �%$�&���J # I ��� �%$�& if ( 8 0LK16NMPORQ ) or K � 8�S 0 � 6� I ��� � if ( 8 0LK16NTPORQ ) and KVU� 8�S 0 � 6
for K � ��������������� � . 8 0LK16
�W> @ �E�XA is the KZY\[ evalu-
ation of a uniform randomnumbergenerator. O]Q is
the crossover constant �^> @ �E�XA . O]Q � @ meansno
crossover. 8;S 0 � 6_�`0 ��������������� � 6 is a randomlycho-
senindex which ensuresthat B ��� �%$�& getsat leastone
elementfrom # ��� �%$�& . Otherwiseno new parentvector
wouldbeproducedandthepopulationwouldnotalter.

Selection:
A ”greedy” selectionschemeis used:If andonly if the
trial vectoryieldsa bettercostfunctionvaluecompared
to theparametervector �
��� � , is it acceptedasanew par-



ent vector for the following generation * � . Other-
wise, the target vector is retainedto serve as a parent
vectorfor generation * � onceagain.

Therearethreestrategy parametersaltogether:�V� :
Numberof membersin a population,, : Amplification
factorof thedifferencevector, O]Q : Crossoverconstant.

Other Variants of DE:
Thereareseveralvariantsof DE whichcanbeclassified
usingthenotation[1] �badc � c�efc;g where� specifiesthe
vectorto bemutated,e is thenumberof differencevec-
torsused,and g denotesthecrossover scheme.� canbe’rand’ (randomlychosenpopulationvector)
or ’best’ (the bestvector from the currentpopulation).
Sincewe useonly one differencevector, e is one in
thedescribedscheme.Thecurrentvariantfor g is ’bin’
whichmeanscrossoverdueto independentbinomialex-
periments. Using this notation, the basicDE-strategy
canbewritten as: �ha=c�8�i1Skj�c � c�l � S . Anotherpossibil-
ity is the method �ha=c�lXm�nEopc � c�l � S , wherewe have the
following mutantvector # ��� �%$�&��?�rqtsvu Y � � *+,w.�0 � ( &)� � 3� ()2 � � * � ()4 � � 3 � (5x � � 6 �
3 Performanceon TestFunctions

For eachtestat least20 runsweremade,anda maxi-
mum of  zy�{p| �}� @ x generationswereallowed unless
otherwisestated.For all functions,the terminationcri-
terion is ~ ����� Y 3 � {�� Y ~��`� where ����� Y is the optimum
function value, � {�� Y is the actualfunction value,and �
is theprecisionvalue.TheInitial ParameterRangeIPR
anda terminationcriterionweredefined.Initial param-
etervaluesweredrawn randomlyfrom the IPR. For an
initial normaldistribution with variance� 2 andexpec-
tation value � , we write �1� Qz� � > �d��� A . For a uni-
form distribution within the limits 3 � and � , we write��� Q � >�3 ���)� A .
3.1 SphereFunction

The � -dimensionalsphereis definedas � u � [ s ( s 0���6 �� G�\��& 0 �
� 3 � 6 2 .
2-dimensionalSphere:

Weset � ��� @�� &�� and �1� Qz� � >�3�� � �XA . Notethatthe��� Q � is definedsuchthat it did not centeraroundthe
minimum 0 � � � 6 .

For the first test,we set , � @ ��� , ORQ � @ � � , and�V� ��� � . Theresultwasthatthevectorsdid not reach
the minimum but got stuck on their way to the mini-
mum,meaningthatthey gotcloserto eachotherandthe
differencevector for the perturbationdecreased.Note

that if we choosean ��� Q thatcentersaroundthemini-
mum,thevectorsdo notgetstuck,sincein thiscasethe
populationapproachestheminimumfrom all directions
anddoesnot convergebeforearriving at theminimum.

To avoid premature”convergence”, the step size
needsto be increased. Therefore,in the next test a
higheramplificationfactor, , � @ ��� , waschosen.With
othersettingsunchanged,theminimumwasfoundin all
testruns.

5-dimensionalSphere:ORQ wassetto a relatively high value, O]Q � @ ��� . That
meansthat on the average� @�� of the elementsof the
trial vector were identical to thoseof the mutantvec-
tor, which implied a high diversity. The other param-
eterswere chosenas follows: , � @ ��� , �	� � � � ,� �¡� @�� &�� , ��� QC� � > @ � �XA . The minimum wasnot
foundwith thesesettings.It seemsthatdueto thehigh
crossover constantthe path length increasedwithout a
significantly higher speedto approachthe minimum.
With eachgenerationthe individualsgot closerto each
otherandconvergedbeforethey reachedtheminimum.

On the other hand,if ORQ is chosentoo small, DE
needsmoregenerationsto find theminimumor it might
even not find the minimum at all. If, for instance,the
crossover parameteris set to O]Q � @ , only one ele-
mentof avectoris altered.Thismeansthatapopulation
membercanmoveonly parallelto theaxes.Therestric-
tion to certainmoving directionsdecreasesthe conver-
gencespeed.Moreover, thereare functionswherethe
minimumcannotbe reachedwith only verticalor hori-
zontalsteps.

Fromthefirst testrunsfor the2-dimensionalsphere
it becameclearthat , mustnotbesmallerthanacertain
valuein orderto find theminimum.Thefollowing tests
showedthatthis valuehighly dependson thecostfunc-
tion. Hence,no exactrule for thelower boundof F can
be given for eachfunction, but in mostcasesit should
beat leastlargerthan , � @ ��� . Nevertheless,it is inter-
estinghow thenumberof functionevaluationschanges
if theamplificationfactor , is increased.The strategy
parametersweresetasfollows: � �¢� @�� &�� , �V� �£� � ,
and ORQ � @ � � , ��� QC� � > @ � �XA . A smallerampli-
fication factor resultsin a smallernumberof function
evaluationsS¤�%m andin anincreasingrisk not to find the
minimum.

Next, we study the influenceof the crossover con-
stant ORQ on S¤�%m . We alreadyknow that, at leastfor
thesphere,a too high crossover constanthastheeffect
that the minimum is not found. The samesettingsfor



the 5-dimensionalspherewereusedasbeforebut with, � @ ��� and O]Q between@ � @ and @ ��¥ � in stepsof @ � @¦� .
In this casethesolutionwasfoundevenif ORQ is setto
zero. On the averagefewer function evaluationswere
usedfor ahighercrossover constant.But again,therisk
thattheminimumis notfoundincreasesfor alarger ORQ .

The dependenceof S¤�%m on the strategy parameter
NP was testedusing again the 5-dimensionalsphere
cost function with the samesettingsas above, exceptORQ � @ ��� , and , � @ ��� . This time we also com-
pare the behavior of DE/best/2/binwith the behavior
of DE/rand/1/bin. S¤�%m increaseslinearly asa function
of �	� andthenumberof functionevaluationsfor one
memberof a populationremainsconstant(figureomit-
teddueto spacelimitations).Nevertheless,thetotal S¤�%m
increasesdueto �V� . Notethat if thereareonly 5 vec-
torstheminimumis notfoundin everytestrun. It seems
that in this casethe diversity of the populationis too
small.

Comparingto DE/rand/1/bin,DE/best/2/binneeds
almost the same number of function evaluations to
find the minimum exceptfor a small populationwhere
DE/best/2/binconverged slower than DE/rand/1/bin.
However, in this caseit still finds the minimum in� �¦� of the runs whereasDE/rand/1/bin was suc-
cessful in only � �¦� . Since the perturbation vec-
tor of DE/best/2/binis on the averagelarger than for
DE/rand/1/bin,asmalleramplificationfactoryieldsbet-
ter resultswith DE/best/2/bineven for larger popula-
tions.
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Figure 1: 20-dimensionalsphere: S¤�%m as a func-
tion of the parameter�	� . Note that for �V� � � ,
DE/rand/1/bindoesnot find theminimum.

20-dimensionalSphere:
Finally the 20-dimensionalspherecost function was
usedfor several testrunswith varying strategy param-

eter �	� . Fig. 1 shows that DE/best/2/bintakesmany
more function evaluationsthan DE/rand/1/binfor the
samesize of a population. However, DE/best/2/bin
provesto be the bettervariant for convergenceusinga
small populationsize. DE/rand/1/bindid not find the
globalminimumin all 20 testrunsfor �V� � � whereas
DE/best/2/binfoundit with probability � �¦� .

Summary for the Sphere function:
Tab. 1 shows the best resultsfor the spherefunction.
Theamplificationfactorandthecrossover constantfor
thebestsolutionsdid not changesignificantlyif we in-
creasedthedimensionor thesizeof thepopulation.This
meansthatwecankeepthevaluesof , and O]Q for dif-
ferentsettingsof � and �	� .

We concludefor the spherefunction: The amplifi-
cation factor , should not be smaller than a certain
valueto avoid that the populationconvergesbeforear-
riving at theminimum. On theotherhand,theamplifi-
cationfactor , shouldnot bechosentoo largebecause
the numberof function evaluationsincreasesas , in-
creases.The crossover constantO]Q shouldnot be too
large to avoid that the perturbationsget too high and
theconvergencespeeddecreases.However, asmall O]Q
decreasesdiversity andmight causethe strategy to get
stuck.For thesamesizeof thepopulationDE/best/2/bin
and DE/rand/1/binperform similarly. However, for a
small populationit is morelikely to find theminimum
usingDE/best/2/bininsteadof DE/rand/1/bindueto the
improveddiversityof the trial vectors.Thebestresults
wereachievedwith DE/best/2/bin.

DE-strategy D NP CR F S¤�%m
best/1/bin 2 8 0.4 0.45 © @ � � ���
best/1/bin 5 8 0.4 0.45 ¥ © � � � © �
best/2/bin 20 10 0.4 0.45 ��� © � � � © �

Table1: Bestresultsfor thespherefunction.

3.2 Rosenbrock’s Function

The � -dimensionalRosenbrock’s functionis definedas� ( � uªs � 0���6 � � G � &�\��& > � @Z@«.10 � 2� 3 �!�\$�& 6 2 *�0 �
� 3 � 6 2 A
2-dimensionalRosenbrock’s function:

An �1� Q � >�3 � @ � � @ A wasusedandaftersometrialswe
fixed the strategy parametersto , � @ ��� , O]Q � @ ��� ,
and �	� ��� � .

Test runs for the 2-dimensionalRosenbrockfunc-
tion and a uniform distribution in the region >�3 � �



� � 3 � � � �¬e-� ��A revealedthat DE/rand/1/binper-
forms worsethanDE/best/2/bin.The parameterswere
set to �V� �­� � , , � @ ��� , ORQ � @ ��� . Note that
sincetheperturbationvectorfor DE/best/2/binconsists
of two differencevectorsthestepsizeis larger thanfor
DE/rand/1/bin.For this reasononecanexpectthat S¤�%m
is lower when choosinga smalleramplificationfactor, . And indeed,S¤�%m getssmallerwith , � @ ��� in our
tests.

For all thefollowing testruns, ��� Q � � > @ � @ �\�XA and� ��� @�� &�� .
5-dimensionalRosenbrock‘s function:

For the 5-dimensionalRosenbrockfunction, we used�V� ��� � , ORQ � @ ��� , and , wasvaried.With increas-
ing , themeannumberof functionevaluationsbecame
larger. For ,£M?@ �¯® theglobalminimumwasnot found
(at leastnotwithin  CyF{p| . �	� ��� ��@°@Z@Z@ functioneval-
uations).Thereis thesametendency asfor thesphere.
However, thelower boundfor , wasat , � @ �¯® , com-
paredwith , � @ ��� � for the sphere. This shows the
difficulty whenchoosing, for a real problem. We do
not wanta high amplificationfactorsincethis meansa
highnumberof functionevaluations.Ontheotherhand,
if we choosea small , therisk increasesthat themini-
mumis not foundatall.

Next, ORQ is variedandtheamplificationfactoris set
to , � @ ��� . S¤�%m decreasesfor growing O]Q . If ORQ is
large the diversity of the populationis relatively high.
Here,a high diversity improvedtheconvergencespeed.
Notethatfor this testfunctiontheglobalminimumwas
not foundfor ORQ � @ sincefor Rosenbrock‘sfunction
it is not possibleto find theglobalminimumwith only
stepsthat are parallel to the axes. As opposedto the
spherefunction, O]Q ��� yieldsasolution.

WecompareDE/rand/1/binwith DE/best/2/binusing, � @ ��� and O]Q � @ ��� . The resultsweresimilar to
theonesfor thespherefunction. Here,DE/best/2/binis
worseif thepopulationsizeis high(aboutthreeor more
times � ). For a small population(aboutone to two
times � ) DE/best/2/binis better than DE/rand/1/bin.
Sincefor DE/best/2/bintheperturbationvectorconsists
of two differencevectors,the diversity is highercom-
paredto DE/rand/1/bin.Hence,we getaboutthesame
diversity like for DE/rand/1/binwith a smallerpopula-
tion size. The smallerthe populationsize, the smallerS¤�%m sincefor eachmemberof apopulationandfor each
generationa functionevaluationis needed.

Summary for Rosenbrock‘s function:
Tab. 2 shows thebestresultsfor Rosenbrock‘sfunction.

Notethatall of themwereachievedwith DE/best/2/bin.
The resultscanbe summarizedasfollows: For Rosen-
brock‘sfunctionthebehavior of S¤�%m asafunctionof , ,ORQ , and �	� is similar to the behavior for the sphere
function. However, thevaluesof theparametersarenot
thesame,e.g.theamplificationfactormustnotbelower
thanabout , � @ �¯® for Rosenbrock‘sfunctionwhereas
for thespherefunction , � @ ��� � is still possible.

DE-strategy D NP CR F S¤�%m
best/2/bin 2 10 0.9 0.6 �Z�¦® � ¥ @
best/2/bin 5 10 0.9 0.6 © ���Z� � ®��±�
best/2/bin 20 15 0.9 0.6 �Z�Z�E�Z�±� � �Z�Z�¦®Z®

Table2: Bestresultsfor Rosenbrock‘sfunction.

3.3 Rastrigin’s Function

Themultimodal � -dimensionalRastriginfunction

� ( { u Y 0���6 � 0 � . � @�6¤*³² G´�L��&�µ � 2� 3 � @7¶¸·¦¹;0 ��ºH�!� 6v»1¼
is testedusing �1� Q � >�3 � @Z@ � � @Z@ A and � ��� @ �
½ .

In the first test run with O]Q � @ � � , �	� � � � ,
and , � @ � � , the global minimum wasalways found
and the averagenumberof function evaluationswasS¤�%m �¾� © ¥ � ® @ when using DE/best/2/bin. For the
samesettingsDE/rand/1/binfound theglobaloptimum
only in � �¦� of the runswith a S¤�%m �¿�Z�À®�� � �±� . As
long as the step size is high enough(larger than the
smallestdistancebetweentwo adjoininglocal minima)
it is possibleto advanceto theglobalminimum. If the
stepsizewastoo small thepopulationcouldnot escape
a local minimum.

For higher valuesof , the chanceof finding the
global minimum increasessincedue to the larger per-
turbationvector the populationis able to escapelocal
minima. If we considerthe numberof the successful
testruns,a large ORQ doesnot differ muchfrom a smallORQ . For a small , (e.g. , � @ � © ), the bestresults
wereachievedwith DE/best/2/binandtheworst results
with alarge ORQ . Themostimportantsteeringparameter
turnedout to be thesizeof a population. If we choose�V� �Á� @ the global minimum was found in almost
every test run. Even for relatively small amplification
factorsthe global minimum wasstill found with large
populations.



3.4 Modified Rosenbrock Function

Theoptimizationof themultimodal2-dimensionalmod-
ified Rosenbrockfunction

� y �5Â ( � u 0���6 ��� @Z@ � @].Z0 � 2 3 � 2 & 6 2 *'0 ��� @R3 �k& 6 2 * i 0��F6
where

i 0���6 �:®�� 3 � @Z@�. m �¦Ã µ � @Ä053«0 �k& * ��� @�6 2 3Å0 � 2 * ��� @�6 2 6 »
is initialized with ��� Q � >�3 � � ��A andit is � �Æ� @��
½ . A
smallersizeof the populationis worsewith respectto
theglobaloptimizationbehavior. However, a largepop-
ulationincreasesS¤�%m . An amplificationfactor , � @ ���
performedbetterthan , � @ � � . DE/best/2/binwasbet-
ter thanDE/rand/1/bin.If just onememberof thepop-
ulationgetsto theareawherethecostvaluesarebelow
thecostvaluefor thelocal minimumit will becomethe
bestvector. For DE/best/2/bintheperturbationvectoris
addedto thebestvectorof thecurrentpopulation.This
meansthat thepopulationhasthe tendency to move to
theglobalminimum.

4 Choiceof StrategyParameters

However, theapplicationof DE onseveraltestfunctions
showed that the capability of finding the global mini-
mumandafastconvergencerateareverysensitiveto the
choiceof thecontrolvariables�V� , , , and ORQ . Some
rulesof thumbfor their choicearegivenbelow.

Population Size �V� :
Accordingto ourexperienceareasonablechoicefor the
populationsizeis between�	� � © . � and �	� �/¥ . � .
Note, that �V� must be at least 4 for DE/rand/1/bin
and5 for DE/best/2/binrespectively to ensurethat DE
will have enoughmutuallydifferentvectors.Thelarger
thepopulation,the larger theprobabilityof finding the
global minimum for multimodal functions. A larger
populationimplies a larger numberof function evalu-
ations,however.

Amplification Factor , :, shouldnot besmallerthana certainvalueto prevent
prematureconvergence.This valuedependson thecost
function andon the otherstrategy parameters,e.g. for
the spherefunction , � @ � � ( O]Q � @ � � , �V� �¡� � )
andfor Rosenbrock‘sfunction , � @ �¯® � ( O]Q � @ ��� ,�V� �Ç� � ). A larger , increasesthe probability for
escapinga local optimum (seeFig. 2). However, for, T � the convergencespeeddecreases.It is more

difficult to converge for a populationwhen the pertur-
bation is larger than the distancebetweentwo mem-
bers. A goodinitial choicefor the amplificationfactor
is , � @ ��� . If onesuspectsthatwith this settingonly a
localoptimumis found,then , shouldbeincreased.

Difference vector (F large)

Target vector

Global optimum

Local optimum

Difference vector (F small)

Figure2: If , is chosentoo small it getsmoredifficult
to escapelocal optima.

Crossover Constant O]Q :
A large ORQ often speedsup convergence. However,
from a certain value upwards the convergencespeed
may decreaseor the populationmay converge prema-
turely. This valuedependson the cost function andis
locatedin the region ORQ � @ ���F��������� @ . A goodchoice
for thecrossover constantis avaluebetweenORQ � @ � ©
and O]Q � @ ��� .

DE Variants:
DE/best/2/binseemsto be better than DE/rand/1/bin
with respectto both convergencespeedandglobal op-
timization. For DE/best/2/bintheperturbationvectoris
addedto thebestvectorof thecurrentpopulation.This
meansthat thepopulationhasthe tendency to move to
the local minimum. Whenthemembersof thepopula-
tion convergeto a localminimumthedifferencevectors
decreaseandsodoesthechanceto escapea local mini-
mum.

Since for DE/best/2/bintwo differencevectorsare
addedto the target vector, the amplification factor ,
shouldbe generallysmallerthanfor DE/rand/1/bin. If
we have a populationof six individuals, 360 differ-
entperturbationvectorsarepossiblefor DE/best/2/bin,
but only 30 for DE/rand/1/bin. This meansthat with
DE/best/2/bina lot more different trial vectorscanbe
generatedaswith DE/rand/1/bin. In this way a larger
parameterrangecanbecoveredfrom generationto gen-
eration.



5 Comparisonwith other Evolution Strategies

DE is comparedwith an evolution strategy with Co-
varianceMatrix Adaptation(CMA-ES) [2] and with-
out CMA (ES). See[2] for the strategy parametersof
the two evolution algorithms.The precisionvaluewas
( � ��� @�� &�� ) andresultsaresummarizedin Table3.

DE ES CMA-ES

Sph5D ¥�� © . � @ 2 � ��� © . � @ 2 ¥ . � @ 2 ® . � @ 2
Sph20D �f��� . � @ 4 � ����� . � @ 2 © . � @ 4 © . � @ 4
Ros5D © � �]. � @ 4 � @ ��¥ . � @ 4 � . � @ZÈ © . � @ 4
Ros20D ���\� . � @ È � @ ��� © . � @ È � @Z½ © . � @ x

Table3: Comparisonof differentoptimizationstrategies
on unimodaltestfunctions.

Thestartpoint for ESandCMA-ES was �	� @ . For
the spherefunction, �1� Qz� � > @ � �XA . andfor Rosen-
brock‘sfunction, �1� Qz� � > @ � @ �\�XA .

Theresultsshow thattheDifferentialEvolutionstrat-
egy performssimilar to the CMA-ES and ES for the
spherecase.However, DE provedtobethebettervariant
comparedto thesimpleESfor Rosenbrock‘sfunction.

The 2-dimensionalmodified Rosenbrockfunction
and Rastrigin’s function serve us to comparethe fre-
quency of finding the global minimum of multimodal
functions. Fifty testrunsweredonewith DE. The set-
tings of the strategy parametersfor DE, ES,CMA-ES,
andRandomsearchwereasfollows:É DE for Rosenbrock‘s function:  yF{p| � © @Z@Z@ ,��� Q � >�3 � � ��A , O]Q � @ ��� , , � @ ��� , and�	� �/� @ .É DE for Rastrigin’s function:  y�{�| � © @Z@Z@ ,��� Q � >�3 � @Z@ � � @Z@ A , O]Q � @ ��� , , � @ ��� , and�	� ��� � .É ES/CMA-ES: Ê �Á� parents,Ë �Ì� @ children,��@7@Z@Z@ function evaluations, and initial global

stepsize Í ��� @ � 2 .É Random search: ��@Z@Z@Z@ functionevaluations.

DE with aprecision� ��� @��
½ neededonly � © ¥ � ® @
function evaluationsto reachthe goal for Rastrigin’s
functionand �Z�Z�Z� � �Z� © for Rosenbrock‘sfunctionre-
spectively, asshown in Table4.

DE performedmuchbetterthanthe otherstrategies
with regard to the global optimization performance.

Rastrigin2D Mod. Ros.2D

DE/best/2/bin 100% 50%
ES 37% 10%
CMA-ES 33% 7%
Randomsearch 0.1% 100%

Table4: Comparisonof differentoptimizationstrategies
with respectto theglobaloptimizationperformance.

However, we shouldnote that thesegoodresultswere
only achievedby trying severaldifferentsettingsfor the
strategy parameters. The convergencespeedand the
globaloptimizationbehavior dependeda lot on thepa-
rametersettings.

6 Summary and Conclusions

To find appropriatestrategy parameters,DE wasapplied
toseveralunimodalandmultimodaltestfunctions.DE‘s
globaloptimizationperformanceandconvergencespeed
comparewell with ESandCMA-ESwhengoodstrategy
parametersarechosen.However, it turnedout that the
performanceof DE is very sensitive to thechoiceof the
strategy parameters.
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