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Abstract: Change of parameters, such as dynamic pressure, Mach number, etc., have a significant influence on the 
dynamic properties of aircraft, and consideration of every necessary point in the flight envelope is important for the 
design of a flight control system.  Because of this characteristic of the design problem one of the efficient design 
methods is the multi-model approach.  A genetic algorithm is coded to optimize a vector of performance indices of 
each model in multi model.  The results in this paper showed that the genetic algorithm is convenient for determining 
pareto optimal controller parameter sets. 
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1 Introduction 
Aircraft control problems are usually more complicated 
than those of other vehicles.  Because the aircraft have 
six degrees of freedom: Three associated with angular 
motion about the aircraft's center of gravity and three 
associated with the translation of the center of gravity. 
[1]  

The model of a conventional aircraft characteriz-
ing its motion dynamics is a set of nonlinear differential 
equations.  The first step in solving the stability problem 
is modeling.  The second step is linearization of those 
equations to obtain a set of linear differential equations 
with constant coefficients. This linearized set represents 
the motion dynamics about the operating point of 
interest.  Considering the straight-symmetric wings-
level flights within a given flight envelope there are 
infinitely many operating points, since the flight 
envelope consists of infinitely many altitude-velocity 
pairs.  In practice, designers sample altitude-velocity 
pairs at sufficiently many points (generally four points 
for aircraft examples) in the flight envelope.[2] 

The stability and control problem of the aircraft 
may be summarized as computing suitable feedback 
coefficients from motion sensors to the deflectional 
surfaces of the aircraft such that flight condition is 
preserved under external disturbances. 

Clearly this set of coefficients works for all the 
sampled points in the flight envelope.  Since 
coefficients of the nonlinear differential equations, and 
consequently that of the linearized differential 
equations, are continuous functions of both altitude and 
velocity, it is concluded that the coefficients work good 

for any altitude-velocity pairs in the flight envelope.  
This method is called multi-model approach. 

In aircraft control problem it is also necessary to 
ensure certain design objectives for all points in the 
flight envelope.  Hence a multi model approach together 
with vector optimization is best suited for an aircraft 
control system design.  On the other hand if we consider 
different models of an aircraft obtained at different 
points of a flight envelope and design objectives that 
should be optimized for each model, difficulty of a 
control system design for an aircraft can be easily seen. 

In this study, it will be shown that excessive 
calculation load and the difficulty of finding controller 
parameters that make system objectives optimal (called 
pareto-optimal points) for an aircraft flight control 
problem can be overcame by genetic algorithm. 
 
 
2 Multi-Model Control Approach to 
Aircraft Control Problem  
The problem of control system design is stated with 
explicit uncertainty bounds for physical parameters in 
the plant model and performance bounds as design 
objectives. A finite number of typical plant parameter 
values is used to define a multi-model problem[3]. The 
plant dynamics is not uniquely given, but it is described 
using multiple candidates of dynamical systems or 
multiple models [4,5]. 

As it has already been stated mathematical model 
of an aircraft is nonlinear.  This nonlinear model may be 
linearized for small deviations from stationary flight 
with constant altitude h and velocity v.  Then linear 



model depends on these operating conditions.  
However, these operating conditions may vary with 
flight conditions or environmental changes in flight 
envelope.  A linearized aircraft dynamics is described 
by a state space model, 
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where [ ]Thv=q is the vector of uncertain plant 
parameters.  Assume the state variables in x  are chosen 
such that the output matrix C  does not depend on  q . 

The coefficients of the closed loop characteristic 
polynomial are functions of both the plant parameters 
q and the controller parameters k .[3] 
 
D(s, kq, )=d0( kq, )+d1( kq, )s+…+dn-1( kq, )sn-1+sn 

 (2) 
A typical robustness problem is then: Find a k  

such that the roots of D(s, kq, ) have negative real parts 
and ensures all desired objectives for all q ∈Ω . Where 
Ω  is the set of possible flight conditions in the flight 
envelope.  In aircraft control systems design only a 
finite set of models for Nqqq ,...,, 21  are available. In 
this case the set of all stability regions in the subspaces 
for 1qq = , 2qq = ,…, Nqq =  projected into one K -
space. This is the multi model approach [3].  After the 
set of all stabilizing k  of all stability regions in the 
subspaces Nqqq ,...,, 21  was determined, the second 
step is determining subset of this stabilizing k  set 
which optimize vectorial performance criteria [3]. 

For each model of the multi model problem 
( jj BA , ), j =1,2,…,N, a vector of performance indices 
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must be formed (that is N times).  A pareto optimal 
value of g  is wanted. If the set of Pareto optimal 
solutions for a given plant is known, the most desired 
solution in this set can be selected. [6] 
 
 
2.1 Multiobjective Optimization 
In single-criterion optimization, we seek the best 
(highest or lowest) value of the well-defined objective 
(utility or cost) function.  In multiobjective (or vector 
valued) optimization the notion of optimality is not all 
obvious.  If we refuse to compare apples to oranges then 
we must come up with a different definition of 
optimality, one that respects the integrity of each of 
separate criteria.  The concept of Pareto Optimality 
helps us to do this. [7] 

A Pareto-optimal point is a point in a set that does 
not have any better point different from itself in its open 
neighborhood.  Hence, a set of Pareto-optimal points P 
can be defined as [6] 
 { }}{)()(:)(: xxUxBxUxP =∩∃=  (4) 
Where U(x) represents an open neighborhood of x, B(x) 
is a set of better performance vectors of x.  Pareto-
optimal solutions can be found by genetic algorithms 
[7]. 
 
 
3 Genetic Algorithms 
Genetic Algorithms (GAs) are global numerical 
optimization methods, patterned after the natural 
processes of genetic recombination and evolution. 

The GA used in this paper known as the simple 
genetic algorithm. In this algorithm, the three-operator 
GA with only minor deviations from the original is 
used. 

An initial population of binary strings is created 
randomly. Each of these strings represents one possible 
solution to the search problem. Next the solution strings 
are converted into their decimal equivalents and each 
candidate solution is tested in this environment. The 
fitness of each candidate is evaluated through some 
appropriate measure. The algorithm is driven towards 
maximizing this fitness measure. Application of the GA 
to an optimal control problem entails minimizing the 
selected performance index. After the fitness of the 
entire population has been determined, it must be 
determined whether or not the termination criterion has 
been satisfied. If the criterion is not satisfied then we 
continue with the three genetic operators: reproduction, 
crossover and mutation.[8] 

Fitness-proportionate reproduction is effected 
through the simulated spin of a weighted roulette wheel. 
The roulette wheel is biased with the fitnesses of each of 
the solution candidates. The wheel is spun N  times 
where N  is the number of strings in the population. 
Copying strings according to their fitness values means 
that strings with a higher value have a higher probability 
of contributing one or more off spring in the next 
generation[7]. This operation yields a new population of 
strings that reflect the fitnesses of the previous 
generation’s fit candidates. The next operation, 
crossover, is performed on two strings at a time that are 
selected from the population at random. Crossover 
involves choosing a random position in the two strings 
and swapping the bits that occur after this position. The 
resulting crossover yields two new strings means the 
strings are part of the new generation [8]. The crossover 
rate specifies the number of strings which are effected 
crossover operator. 



The mechanics of reproduction and crossover 
are suprisingly simple, involving random number 
generation , string copies , and some partial string 
exchanges.[7]  

The final genetic operator in the algorithm is 
mutation. Mutation is performed sparingly, typically 
every 100-1000 bit transfers from crossover, and it 
involves selecting a string at random as well as a bit 
position at random and changing it from 1 to 0 or vice-
versa. After mutation, the new generation is completed 
and the procedure begins again with fitness evaluation 
of the population [8]. 
 
 
4 An Application to Longitudinal Flight 
Control 
In this paper, we consider pitch orientation control 
system for short-period approximation of an aircraft. 

In [9], it has been shown that a simple genetic 
algorithm can be used to find a controller parameter for 
pitch orientation control system for short-period 
approximation, as shown Fig.1, with a single 
performance criterion.  But for the study presented here, 
two criteria were taken and a genetic algorithm was 
coded in PASCAL programming language to determine 
the pareto-optimal solutions of controller parameters for 
an aircraft. 

 
The aircraft dynamics block shown in Fig.1 is 

defined as 
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. Where, q  is the pitch angular 

velocity and Eδ is the displacement of the elevator.  In 
[10], this dynamics for short-period approximation is 
given by, 
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Rate gyro transfer function is just a gain with a 
value of 1.5 and integrating gyro transfer function 
is 20

20
+s . 

The goal of the genetic algorithm is to determine 
the value of 1K  which is the integrating gyro gain 
shown in Fig.1. This value must be closely ensured by 
desired damping ratio and minimum settling time at the 
four flight dynamics in the longitudinal flight envelope. 
The performance index vector for this problem is 
defined like in the Eq (3) as, 
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Where spζ  is the damping ratio and st  is the 

settling time of short period closed loop system shown 
in Fig.1. The values 1K  making minimum of this 
vector is the pareto optimal solution set of 1K . 

The genetic algorithm program steps to find 
pareto optimal integrating gyro gain ( 1K ) set are given 
below: 
1-) Read following parameter values from the file, 

a) flight condition parameters and stability 
derivatives for four flight conditions.  

b) the genetic algorithm parameters; population 
and generation size, crossover and mutation 
rate, parameter resolution, 

c) desired values of performance criteria for the 
short period closed loop dynamics ( desiredspζ ). 

2-) Calculate the aircraft dynamics using Eqn.(5) and 
closed loop dynamics at each flight condition. 
3-) For each flight condition, find the range of 

i1K , 

i =1,2,3,4 which stabilizes the closed loop system. The 
intersection of the stabilizing 

i1K intervals gives the 

range of stability for all sampled flight conditions. 
4-) Do following steps at each flight condition: 

a) Generate an initial population of 1K  in its 
stability range. 

b) Select dominated and nondominated 
individuals. The 80 percent of the non 
dominated individuals are copied to the next 
generation. Rest of the population is 
randomly selected. 

c) Apply crossover and mutation operation to 
selected individuals. 

d) Repeat steps b and c until the generation 
number reaches specified generation. 

e) Memorize the obtained 1K  interval which are 
the pareto optimal solution set. 

5-) Find intersection of memorized 1K  intervals. If there 
exist an intersection, this ensures pareto optimal 

eδ  q 

Fig.1 Pitch orientation control system block diagram
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solution set of the vectorial performance index at the 
four flight conditions and also all of the longitudinal 
flight envelope. 

In this paper, we have chosen an aircraft called 
BRAVO (a twin-engined, jet fighter aircraft) to apply 
the multi-model approach and also genetic algorithm. 
The flight condition parameters and stability derivative 
values were obtained from [1]. 

Genetic algorithm parameters are selected as: 
Population size: 70 
Generation size: 150 
Crossover rate: 0.75 
Mutation rate: 0.01 

Desired damping ratio: 4.0=
desiredspζ  

Results obtained for all flight conditions at initial, 
100th and 150th generations are given by plotting 70 
individuals’ 4.0−ζ  values against the settling time 
( st ) in Fig. 2 to 4 respectively.  At initial population 
(Fig 2), 70 individuals are selected randomly selected 
from the stabilizing 1K  interval.  As it can be easily 
seen from Fig. 2 that pareto optimal points are the ones 
obtained for values 15.04.0 ≤−ζ  and 5.0≤st .  On 
generation 100, the indivuduals are mostly focused at 
this pareto optimal region (Fig 3) and finaly on 
generation 150 (Fig. 4) all individuals are pareto 
optimal.  The intersection of 1K  values obtained at all 
flight conditions for the 150th generation individuals has 
been found as 
 29.611.0 1 ≤≤ K  (6) 

This interval is the pareto optimal 1K  interval.  
Intersection of corresponding damping ratio and settling 
time intervals has been found as 

0 4432 0 5169
0 2863 0 3812
. .
. .

≤ ≤
≤ ≤
ζ
ts
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Fig. 2 Initial Population 
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Fig. 3 Generation 100 
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Fig.4 Generation 150 

 
Let us choose K1 6=  from the interval given in 

(6).  Then damping ratio and settling time of the system 
obtained for this value of K1 , at each flight condition 
are: 

Flight Condition 1: 483.0=ζ  and 363.0=st  
Flight Condition 2: 446.0=ζ  and 364.0=st  
Flight Condition 3: 465.0=ζ and 365.0=st  
Flight Condition 4: 455.0=ζ  and 367.0=st  
Unit step response of the system at each flight 

condition is given in Fig. 5.  
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Fig. 5 Unit step response for K1 6=  

 
 
5 Conclusion 
A vector of two performance indices is optimized by a 
genetic algorithm of an aircraft, called BRAVO, pitch 
orientation control system for short-period approxima-
tion.  Results show that genetic algorithm is an efficient 
optimization algorithm for the multi-model control 
approach. 
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