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Abstract

After Adleman [1] solved the Hamilton Path Problem using a combinatorial molecular method, many other hard computational problems
have been investigated with the proposed DNA computer [8] [9] [10] [11] [13] [14]. Most of these algorithms can only provide the “yes” or
“no” answers. At the time exact answers need to be generated, the strands in the wanted pool may be isolated and decoded by using electron
microscopy one strand at a time [15]. However, this method to decode the strands is very inefficiency. During the algorithms implementation,
usually a lot of duplicate strands are generated to reduce the error rate [2]. That makes the decoding process very difficult because the same
answer may be decoded many times when only one of the duplicated strands needs to be decoded.

In this paper, a new DNA computing model is introduced based on which new algorithms are developed to solve the 3-Coloring problem.
These new algorithms are presented as vehicles demonstrating the advantages of the new model, and they can be expanded to solve other
NP-complete problems. They have the advantage of decoding all the strands in the final pool very quickly and efficiently. The advantages
provided by the new model make DNA computing very efficient and attractive in solving computational intense problems.
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I. INTRODUCTION

Since Adleman [1] solved the 7-vertex instance of the
Hamiltonian Path Problem (HPP), there has been some
ideas on how DNA can be used for computations [8] [9]
[10] [11] [13] [14]. As onme liter of water can hold 1022
bases of DNA, these methods all take advantage of the
massive number of processors available where each strand
is counted as one processor. This has raised the hope
to solve the problems intractable for electronic comput-
ers. The major goal of these subsequent research in this
area is to understand how DNA computing can be used
to solve NP-complete problems. All these algorithms solve
the problem by going through an exhaust search and then
generate a final set of strands. If the final set is empty, then
there is no solution for the problem. Otherwise, there is at
least one answer for the problem. Usually the answer is
“yes” or “no” based on the final set, such as the answer for
the 3-Coloring problem [2] [3]. The answer is “no” when
the final set is empty and “yes” otherwise. If an exact an-
swer is needed, one of the strands in the final set may be
decoded by using electron microscopy [15]. For example,
when a solution for 3-Coloring problem is needed, “yes” or
“no” answer is not good enough. A strand in the final set
needs to be decoded when the set is not empty.

If all the answers for the problem need to be found, then
all the strands in the final set need to be decoded. During
the process toward the final set generation, many strands
may be duplicated many times by the PCR (Polymerase
Chain Reaction) in order to reduce the error rate [2]. At
the end of the algorithm implementation, one solution may
be represented by many strands that are exactly the same.
These duplicated strands may be decoded one at a time if
the electron microscope is used for decoding. This process
is very inefficient because the strands that represent the
same answer are decoded many times when they need to be
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Fig. 1: AN EXAMPLE OF THREE NODES IN A GRAPH
THAT ARE COLORED BY 3 COLORS: R(RED),
B(BLUE) AND R(RED)

decoded only once. In this paper, a new DNA computing
model is introduced which can solve this problem. Not
only can the algorithm designed based on this model find
all the solutions, it can also accomplish the task very cost
efficiently.

A. Our New Model

Our new model only adopts the matured DNA biologi-
cal operations [1] [13]. The following basic principle oper-
ations: synthesis, ligation, separation, combination and
detection are selected for building the new model.
synthesis I(P, ) To generate a pool of coded strands, P,
following criteria 7. Strands are coded differently for dif-
ferent applications using the four base nucleotides: A, G,
T and C. A set is defined as a group of strands, and the
container holding a set of strands is called a pool. If the
criteria is the colors of a node in a graph, then a pool of
strands coding all the possible colors for the node is ex-
pected after synthesis. In the graph coloring problem, the
strand is encoded for the colors of a number of nodes. Here,
a few consecutive nucleotides on the strand coded for the
color of one node form a region. For example, in Figure 1,
one strand consists of three regions such that s = {RBR}
where (CCAAG), (AATTC) and (CCAAG) represent the
colors for three nodes as R(Red), B(Blue) and R(Red), re-
spectively.
ligation L(Ps, P1, P2) To bind strands in pool P; with



strands in pool P». Each code s1, in P is ligated to every
other code sz, in FP,. If the strands in P, represent the
codes {s1,]i = 1,2,---,c,where s;, € P1} and those in P,
represent the codes {sg,|j = 1,2,---,d,where s3; € Py},
after the ligation, the ligated strands are stored in P; and
they represent the codes {siplk = 1,2,---,¢ x d}, where
sk = 81,89, for k=i +(j —1) xec.

separation S(P, P, P¢,0) To partition strands in pool P,

Hot Cold Hot

0o
U U

and store these strands in two new pools: F; and Py based(]
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on criteria 0. After each separation operation, the strands

—

that meet the criteria will be stored in one pool, P;, while
all the strands that do not meet the criteria will be stored
in the other pool, P. In order to perform the separation
operation, many identical short strands defined as probes
are attached to magnetic beads. These probes are then put
in the pool containing the strands to be separated. Each
probe can be paired up with a complementary strand to
form a double helix. Such pair-up only occurs under the
WC(Watson-Crick) complement rule: A ounly pairs with T
and G only pairs with C. For example, in Figure 1, if the
strands containing the region for node 1 colored as ‘R’ need
to be separated, the DNA short strands TACCCGGTTC
should be used as probes because TACCCGGTTC com-
plements to ATGGGCCAAG. Also, the double helix can
be separated by heating in order to make the paired strands
apart from each other without breaking the chemical bonds
that hold the nucleotides together inside the single strand.
The strands in the pool containing a region that comple-
ments to the probes will be hybridized to, and captured by
the probes, while all those without the region will remain
in the pool [15].

A gel-based separation technique for DNA computing [4]
has been developed which uses gel-layer probes instead of
the bead to capture the strands. The capture layer only re-
tains the strand with a region complementing to the probe
when it is cooled down, and will let all strands pass when
the layer is heated up. The advantage of using gel-based
probes over bead-based probes is that the gel-based method
is more accurate when capturing DNA molecules. In Fig-
ure 2 which illustrates the gel-based separation, a set of
strands run from the left side buffer to the right. At each
capture layer, the temperature is cold in order to capture
the desired strands, and all unwanted strands are passed
through into one pool. Then the temperature is raised to
let all desired strands in the layer pass into another pool.
The strands from the left buffer are separated and stored
in two different pools.

combination B(P, Py, P;) To pour two pools, P; and P,
together to form a new one, P.

detection D(P) To check if there is any strand left in the
pool, P.

The rest of the paper are organized as follows: the next
section will give an example problem: 3-Coloring problem
and the new DNA computing algorithm, based on the new
model we proposed, to solve the 3-Coloring problem. The
introduction of the new algorithm with efficient decoding
process that can generate exact solutions for the 3-Coloring
problem is shown in Section III. The last section will con-

Fig. 2: SEPERATION OPERATION BASED ON GEL
LAYERS

clude this paper.

II. THE FUNDAMENTAL NEW ALGORITHM

Our new algorithm for the 3-Coloring problem is devel-
oped based on our new DNA computing model. The basic
algorithm which will generate the answer for the 3-Coloring
problem of a given graph is introduced in this section. In
the next section, the algorithm will be advanced to show
how the answers can be decoded efficiently.

A. 3-Coloring Problem

The 3-Coloring problem, a special case of the k-Coloring
problem where k=3, is a well known representative of the
class of NP-complete problems. A new algorithm for solv-
ing the 3-Coloring problem will be introduced, and will sim-
plify the explanation of our new DNA computing model.
The algorithms developed hereby can be expanded to solve
the k-Coloring problem and be generalized to solve other
NP-complete problems.

k-Coloring Problem: A k-Coloring problem is to color
an undirected graph G = (V| E) in such a way that no two
adjacent vertices are sharing the same color [6]. Two nodes
connected by an edge are referred to as adjacent vertices.
The solution is a function ¢ : V' — 1, 2, ---, k such that
c(u) # c(v) for every edge (u,v) € E. In other word, the
numbers 1, 2, - - -, k represent the k colors, and the adjacent
vertices must have different colors. The k-Coloring problem
is to determine whether k colors are adequate to color a
given graph [7].

A simple example graph with ten nodes and ten edges,
G(10,10), is given in Figure 3. It is clearly shown that the
graph can be colored if k > 3.

In order to solve 3-Coloring problem, we need to generate
a pool of encoded DNA strands representing all the possible
color patterns of the n-node graph where each color pattern



Fig. 3: AN EXAMPLE GRAPH G{10,10} THAT CAN BE
COLORED AS R(RED), G(GREEN) AND B(BLUE)

is an assignment of colors to nodes [2] [3]. For example, for
nodes ninaongng, “BBRG” is one pattern which assigns
Blue to ni, Blue to na, Red to n3 and Green to ng, while
“RGBB” is another pattern which colors ninsnzng as Red,
Green, Blue and Blue, respectively. After the strands are
generated and stored in a pool, the strands representing the
color patterns with no color conflict need to be separated.
Two nodes along an edge are defined as having color con-
flict when they are sharing the same color. For the color
patterns with some color conflicts existing along some edges
of the graph, the correspond strand should be filtered out
from the pool.

Our basic algorithm for 3-Coloring problem is introduced
next. Following that, the efficient decoding algorithm and
the advantages of the new algorithms will be described.

B. The New Algorithm

Given a graph G = (V, E), with V. = {uv;|i =1,2,---,n}
being a set of nodes and E = {e;|j = 1,2,---,m} being a
set of edges. Our approach to solve the 3-Coloring problem
for such graph is divide-and-merge. Partition graph G into
two subgraphs: G; = (V1, E1) and Gy = (V3, E») such that
VMuW =V, V1NV, =¢and | Vi |~ V2 | by eliminating
all edges (u,v) such that w € V5 and v € V5. Refer this
set of edges as the cut-set of G, C [6] [5]. The partition
process can be performed recursively, that is, subgraph G;
can be partitioned into Gg;41 and Gg;42, until each sub-
graph contains only one vertex and n subgraphs exist in
total (See Figure 4).

After partitioning the graph G into n subgraph, the al-
gorithm starts to merge every two subgraphs recursively
and in parallel. Before the merge, every subgraph is col-
ored with 3 colors. During the merge, the color patterns of
the two subgraphs are combined together. The merge op-
eration continues until graph G is re-established. Note, to
merge two subgraphs, the edges in the cut-sets eliminated
earlier to partition the subgraphs will be added back and
each addition of such edge will introduce a color conflict if
the nodes it links are of the same color. Hence, the color
patterns that worked for the subgraphs may not work for
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Fig. 4 DIVIDE THE GRAPH, G;, WITH n = 2

NODES UNTIL EACH SUBGRAPH ONLY CONTAINS
ONE NODE

Algorithm 1.
for i=1 ton do
‘In Parallel( I(P;, color of node 1))

end

f=n

while f # 1 do

In Parallel( Make multiple copies of strands in all pools)
for All odd i do

In Parallel( L(PZ,PZ, Pi+1) )

In Parallel( relabel all pools 1 to L)

end

/=1

end

S(P, P, Py, , ), 0 is color conflicts along e,
K=1;

for i =2 to m do

S(Pt, Py, P1,,0), 0; is color conflicts along e;
for j = 1 to K do

[n Parallel { S(Py,, P, Pj,,
e;

0;) }, 0; is color conflicts along

end
for j=1 to K do
In Parallel( B( Py,. Pj-1,,Pj,))

end

B(P;, P1,,®)

B(PfK+17PKf7¢)

K=K+1

end

Check if P, is empty to return “yes” or “no” accordingly.

Fig. 52 THE NEW DNA COMPUTING ALGO-
RITHM TO SOLVE THE 3-COLORING PROBLEM FOR
SPARSE GRAPHS




the merged graph after they are combined, and some com-
bined color patterns should be eliminated. The elimination
continues until the color patterns legitimate for the graph
are found.

Our new algorithm for solving the 3-Coloring problem
on a sparce graph is presented in Figure 5. The first for
loop is used to generate n pools of strands to represent all
possible color patterns for n subgraphs while initially each
subgraph only contains one node.

The function of the while loop is to, first, merge the
pairs of two subgraphs. The bio-operation needed to merge
the two subgraphs is ligation which ligates strands in two
pools to form longer strands. Let the color patterns for
subgraph G be s; and those for G2 be s;. For a given s;, all
the s;’s should be ligated with it, and such operations are
performed over all the s;’s. That is, the strand for one color
pattern of a subgraph is replicated and each duplicated
copy is ligated with one of those strands representing the
color patterns of the other subgraph. After the merge, all
the color patterns of the merged graph will be represented
by the ligated long strands.

Inside the while loop, multiple copies of all the strands
in all the pools need to be prepared for the next round of
ligation. This duplication can be accomplished by using
the PCR (Polymerase Chain Reaction) process [2] [12].

After the merge, some ligated strands may encode the
color patterns that have color conflicts introduced by those
edges in all cut-sets eliminated in the partition step. Our
task is to investigate every edge in the cut-sets and detect
all the color conflicts caused hereby. This is accomplished
by the separation operation, i.e., in all the ligated strands,
to filter out strands that contain any color conflict from the
pool. For each edge under investigation, two nodes, 7 and 7,
are connected. We first separate the pool into three pools
that contain the strands having node ¢ colored as R, G and
B. In these three pools, the strands having node j colored
as R, G and B are filtered out respectively, by using the
separation operation.

If there is any strand left in the final pool, P, then the
3-Coloring problem has an answer, “yes”. Otherwise, the
graph can not be colored by only three colors and the an-
swer is “no”.

III. LOCATE THE EXACT SOLUTIONS

After the final set that contains all the solutions for the
3-Coloring problem for the graph is generated, it is time
to decode the strands in order to reach the color patterns
that can color the graph. Each of the strand in the pool
has one answer encoded and some strands in the pool may
encode the same answer.

The new method introduced here can decode all the color
patterns represented by the DNA strands in pool P; with-
out using the electron microscope to “read” the strands one
by one. It is much more cost and time efficient comparing
with the method that decodes the strands in the pool one
at a time using electron microscope. The flow diagram of
the new method is illustrated in Figure 6. The function
of each box in this figure is a filter based on the gel-based
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Fig. 6: AUTOMATED “DECODING” PROCESS WITH
3n FILTER

separation. The detailed structure of each box is shown
in Figure 7. The filter function is given below: before the
input buffer is filled, the capture layer is filled with small
segments of DNA strands. Each filter is named as Fkc,
where k € {1,2,---,n} and ¢ € {R,G, B}, the capture
layers contains the DNA strand segments that represent
the color pattern complements to color ¢ for node k. The
temperature is cooled down first. Then, the input buffer
lets the input pool flow into the capture layer and valve
A is opened. All strands that contains the segment rep-
resenting color ¢ for node k are capture in the layer. The
rest of the strands in the input pool will pass the layer
and go through valve A. When this process is finished,
valve B is opened and the temperature of the container is
increased. All strands containing the segment that repre-
sents node k being colored with color ¢ is separated from
the rest of the pool. The order of the operations are indi-
cated in Figure 6. For example, F'1r will divide the input
pool into two pools where they contain strands represent-
ing color patterns NpN,_1---NaoN; ={XX--- XR} and
NpNy_1---NagN1={XX---XR} where X € {R,G, B},
R = {G,B}. 1If two filters F1R, and F2R are con-
nected serially, it is easy to separate out the strands
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Fig. 7: AN EXAMPLE OF A FILTER FOR THE KTH
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with patterns NpNp_1--- NoNy ={XX ---RR}. If n fil-
ters Fir where i € {1,2,---,n} are connected serially as
shown at the left column in Figure 6, at the time strands
come out from F'nr, these strands, if any, must be rep-
resenting patterns N, N,,_1---NaoN; ={RR--- XR}. If
no strand comes out from this filter, then the pattern
N,N,_1---NaN; ={RR---XR} is not a color pattern
that can color the given graph. At the time t;, all valves
labeled ¢ in Figure 6 are opened and the temperature
of the corresponding container should have been cooled
down or warmed up. Eventually, x, y and z will provide
some output sets. At time ¢,,41,  should output a set.
This set only has strands representing color combination
of NyNyp—1+--+N1 = RR--- R for n nodes. The following
time ty 42, tn4s, -, tny3n_2, other sets containing strands
representing the color combinations N,N, 1---N; =
{RR---RG,RR---RB,RR---GR,RR---GG, ---,

RB---BB} are outputed from 2.  The color com-
binations represented by strands are outputed from
y and z in the following order: N,N, 1---N; =
{GR---RR,GR---RG,GR---RB,GR---GR,GR--- GG,

-, GB---BB} and N,N,_1---N;1 = {BR---RR,
BR---RG,BR---RB, BR---GR, BR---GG, - - -,
BB---BB}.

The decoding process has been simplified by using the
separate and detect operations. At the time a set is out-
puted from z,y or z, the detect operation will check if it
is empty. If not, the corresponding color combination is
a good one for coloring the graph with no color conflict
along any edge. Otherwise, the set is empty and the cor-

responding color combination can not be used to color the
graph.

Now, let’s check the extra space and effort that are neces-
sary for efficiently decoding the strands in the final set. At
the beginning, it seems that 3n different filters are needed.
When the algorithm for generating the final set is imple-
mented, it can be clearly seen that all the filters are al-
ready generated in order to separate the initial pool con-
taining strands representing all color combinations. The
extra effort is needed to reorder these filters. After the
filters are connected together, the valves and temperature
of the containers can be controled by electronic microcon-
troller automatically. The automation will greatly reduced
the involvement of human being and it will make the DNA
computing more error resistant. In addition, all filters on
the far right column in Figure 6 are not needed because
all strands coming into these strands will pass through the
filter together. There is no filter function necessary here.
Storage buffers can be used to replace these filters for tem-
porarily storage in order to simplify the system. The other
additional effort that is needed is the detect operation. This
step can be accomplished very effectively and quickly.

IV. CONCLUSION

In this paper, a new model for DNA computing is in-
troduced. Based on the new model, our new algorithms
for the 3-Coloring problems have been presented. The new
algorithms have the advantages of decoding all answers for
the problem represented by DNA strands over the methods
that can locate only a few answers in the whole set. The
decoding process of the newly introduced algorithm is very
fast and efficient comparing with the existing method using
electron microscopy. Instead of only providing the “yes” or
“no” answer, the new model can provide exact answers for
the problem. Based on the separate operation, the new
method can decode all the strands in a set with little extra
cost. These new algorithms represent a huge improvement,
over naive search used in the existing algorithms. This will
make DNA computing more attractive to potential users
who want to solve problems currently unsolvable.
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