
Automatic Clustering with Self-Organizing Maps and Genetic Algorithms
Angel Fernando Kuri-Morales

Instituto Tecnológico Autónomo de México
Río Hondo No. 1, México D.F.

Abstract. The analysis of data sets of unknown characteristics usually demands that subsets (or clusters) of the data are
identified in such a way that the members of any one such cluster display common (in some sense) characteristics. In
order to do this we must determine a) The number of clusters, b) The clusters themselves and c) The labeling of every
element in the data set such that each element belongs uniquely to one of the clusters. We discuss an algorithm which
allows us to solve (b) and (c); we assume that (a) is given. We show that the so-called labeling problem may be solved by
minimizing an adequate measure of distance. We discuss several such metrics, the corresponding minimization (genetic)
algorithm and offer some results derived from its application.

Keywords: Clustering, neural networks, genetic algorithms, metrics, optimization.

1 Introduction
There are several ways to attempt the identification of
clusters in a set of data [1], [2], [3]. If we have
information regarding the source of the data we may
apply classical and/or heuristic methods with relative
success [4]. Here, however, we assume that nothing is
known about the data under study and apply the method
originally proposed by Kohonen [5] which originates the
so-called self-organizing maps (SOM). In this method,
basically, a set of vectors (or “neurons”) η is defined.
The cardinality of η (η) is typically smaller than that
of the objects in δ (the data set) i.e. δη ≤ . The
dimensionality of every vector in δ is determined by
the number of features (ϕ) of each object and every
such object is, thus, defined in a ldimensiona−ϕ space.
The neurons in a self-organizing map are simultaneously
defined on two spaces: a) A ldimensiona−ϕ space of
features and b) A “geographic” map of γ dimensions
(typically γ = 2 or γ = 3). The training algorithm then
operates on the neurons in a way such that neighboring
neurons in γ space (hence the name “SOM”)
correspond to elements which share some (possibly non-
linear) attributes in δ space. Throughout this process it
is relatively simple to overcome a priori limitations
present in methods which rely on classical measures of
distance (such as Euclidean or Mahalanobis’ [6]). Once
a set of neurons is trained (i.e. once its coordinates in
δ space are determined), however, one is faced with the
problem of finding the boundaries between the neurons
in a SOM which distinguish one cluster from another. A
simple example will illustrate this fact. Assume that

200=δ , 4=ϕ , 16=η , 2=γ and that the (known)
number of classes (C) is 3. Let us further assume that
through some yet unspecified method the neurons
corresponding to each of these 3 classes has been found,
yielding a map as in Figure 1. Notice that, by definition,
all neurons for C = i (i = 1, 2, 3) are “physically” close
in a euclidean sense. The process of assigning a label to
every group of clustered neurons usually consists of
setting a class number for every neuron from a
previously known classification. In our example the data
would assume a form analogous to the one shown in
Table 1. In this table the heading “F1” to “F4” denote
feature 1 to 4; class 1 consists of k-1 elements, class 2 of
m-k and class 3 of 200-m elements, respectively.

There are alternative ways of displaying class member-
ship but we will adhere to the one illustrated. When the
Ci columns are known, other unknown elements which
stem from the same source (H) giving rise to δ may be
classified successfully, as has been shown in the past
[7].

Fig. 1. A Labeled SOM with 3 Classes

F1 F2 F3 F4 C1 C2 C3

11ϕ 12ϕ 13ϕ 14ϕ 1 0 0 1

21ϕ 22ϕ 23ϕ 24ϕ 1 0 0
... 1 k-1
k1ϕ k2ϕ k3ϕ k4ϕ 0 1 0 k

1,1k+ϕ

1,2k+ϕ

1,3k+ϕ

1,4k+ϕ

0 1 0

... 1 ... m-1

m1ϕ m2ϕ m3ϕ m4ϕ 0 0 1 m

1,1m+ϕ

1,2m+ϕ

1,3m+ϕ

1,4m+ϕ

0 0 1

... 1 200
Table 1. Labeling Data

In the absence of the Ci columns above, one must resort
to some method which assigns class membership to
every element in δ , so as to achieve a tabular structure
similar to the one of Table 1. In the example above there
are 320 (roughly equivalent to 1090) possible
assignments. Clearly, any exhaustive enumerative
approach is out of the question. We will, therefore,
appeal to a genetic algorithm (GA) to find an

approximation to the best possible assignment.
However, before using any optimization method we
must first define a measure of fitness of an assignment.
One of the contributions of this paper is the
identification of a family of adequate metrics.
 The rest of the paper is organized as follows. In
section 2 we describe the details of the training and
labeling algorithms as well as the GA we used. In
section 3 we describe several metrics we tested and how
we arrived at the “best” one. In section 4 we describe the
application of the method to a set of simple
classification problems and the results we obtained.
Finally, in section 5 we offer our conclusions and point
out future lines of research.

2 Algorithms
In what follows we describe the three basic algorithms
on which our method relies: a) The SOM training
algorithm, b) The SOM labeling algorithm and c)
Vasconcelos’ GA. Our description is succint. The
interested reader may see [8], [9], [10] for a more
detailed description.

2.1 Training Algorithm
1. By convention we assume that 2γ = and a grid of
size ηη × . All the neurons are assumed to be in the
points of a grid in γ space where both coordinates are
positive integers. We also assume that the horizontal and
vertical distance between adjacent neurons is 1, as
illustrated in figure 2. Thus, the coordinates in γ space
of all neurons correspond to integers between 1 and
η ; i.e. (1,1), ... , (η , η).

2. All neurons are initially assigned random coordinates
(typically between 0 and 1) in ϕ space. Thus, the
coordinates in ϕ space for all neurons define a

ldimensiona−ϕ vector.
3. An epoch counter n is initialized (1←n). One epoch
is the presentation of all δ objects to the network.

4. A learning rate α(n) for epoch n is defined. Typically
the initial learning rate is close to 1.
5. A feedback function from neuron i to the winning

neuron k in epoch n is defined as)
σ(n)
dexp((n)r 2

2
ik

ik −= ;

where)(nσ is the learning radius for epoch n and dik is

the euclidean distance between neuron i and neuron k.
6. The learning radius is initialized. Typically, in the
beginning, σ(n) takes a value larger than 3.
7. A learning factor αf is defined. It is assigned an
initial value close to 1 (say 0.99).
8. A radial factor σf is defined. It is, likewise, assigned
an initial value close to 1 (say 0.995).
9. An object counter t is initialized (t←1).
10. Training object x(t) is presented to the network.
11. The winning neuron is determined by calculating the
euclidean distance between all neurons and x(t) in ϕ
space.
12. All the vectors in ϕ space are modified as per
equation (1).

))(tijw(x(t)(n)ikrα(n)(t)ijw1)(tijw −⋅⋅+=+ (1)

13. δ=t ?

 Yes:
σfσ(n)1)σ(n
αfα(n)1)α(n

⋅=+
⋅=+

 1←t
 No: 1+← tt
14. Is a stopping criterion reached?
 No: Go to step 10
 Yes: End
It should be noted that the mapping between the

ldimensiona−ϕ space to the ldimensiona−γ one
occurs when rik(n) is found since

)2σ(n)

2
ikd

exp((n)ikr −= (2)

2)yky(i2)xkx(i

kiikd

−+−=

−=
 (3)

 Two further considerations regarding this
algorithm are in order. First, the exponential form of (2)
resembles a normal distribution centered in dik with
standard deviation)(nσ . This implies that the influence
of the winning neuron affects, initially, all neurons in the
network (hence a large initial value for σ(n)); thereafter
the neighborhood size of the winning neuron is made
progressively smaller. Second, since the learning and
radial factors are updated as per (4),

0)(
0)(

ααα
σσσ
⋅=

⋅=
nfn

nfn
 (4)

the adjustment on the coordinates of the neurons is

dynamically done in a way that insures that, as training
advances, the changes in the coordinates are more subtle
every time the data is traversed.

Fig. 2. Distance between Neurons in γ space

2.2 Labeling Algorithm
The algorithm just described guarantees that neurons
which “point” to similar objects are close to each other
in γ space. But, in order to exploit the information
already contained in the network and apply it to new
data (i.e. to attempt generalization), we must be able to
identify the boundaries between the various groups of
neurons in a way that establishes a clear distinction
between the elements of a cluster and those of another.
The separation that does exist between the elements of
any two clusters may be derived from additional
knowledge relating to elements whose membership is
already known. One possible algorithm that has been
used successfully in the past [11] is as follows.
 Given N classes and a set of δ samples

(objects) jkO
r

 each one belonging to a class Ci,

i=1,...,N, and making M=η for convenience, we define
a matrix ∆ of NM × elements. Denote the number of

elements in class i with iC . Clearly, ∑
=

=
N

i
iC

1
δ .

Then,
1. Initialize all elements in P

r
 to 0.

2. For i=1 to N

3. For j=1 to M
4. For k=1 to jC

5. Calculate the euclidean distance dij from neuron i
(iwr) to object jkO

r :

2
,,...

2
1,1,

 −++

 −= ϕϕ iwjkOiwjkOijd (5)

6. Make
ijdijij /1+∆←∆ (6)

7. endfor
8. endfor
9. endfor
10. Calculate

M1,...,mfor
N1,...,n

}mn,{maxmI =
=
∆= (7)

11. Assign the label of class Im to neuron m.

This algorithm has two possible flaws: a) There may be
no unique minimum and b) There may be classes for
which no neuron is assigned. These two possible special
cases are usually accounted for heuristically. For the
purposes of the present discussion we shall assume that
the special cases have already been satisfactorily taken
care of.
 A hypothetical distance matrix ∆ , where M=16
and N=3 is shown in Figure 3.

Fig. 3. An example of a distance matrix.

In Figure 3 we show the accumulated distances from
each of the 16 neurons to the objects for each of the
three classes. The last column displays the membership
class according to a criterion of maximization, as per the
algorithm above. The leftmost two columns (labeled “i”
and “j”) correspond to the coordinates of the neurons in

γ space.

2.3 Genetic Algorithm
Genetic Algorithms (GAs) are optimization meta-
heuristics which differ from other optimization methods
in two essential ways: a) They explore the solution
landscape in several simultaneous loci and b) The
algorithm explores the actual solution landscape but
modifies its own behavior by changing a mapping of the
space of encoded hypothetical solutions into the space of
the actual solutions. They form part of what is now
termed Evolutionary Computation. The “evolutionary”
part of the name comes from the fact that the mentioned
hypothetical solutions are refined step-by-step by
preserving the most promising candidates from a so-
called “population” which is, simply put, a set of viable
solutions to the problem at hand (each solution in the set
is an “individual” of the population). From a suggestive
analogy with the living beings, the elements of the
encoded solutions are called genes (hence the name
“genetic”), the decoded solutions are the phenotypes,
whilst their encoded counterparts are called the
genotypes. GAs have been widely treated in the
literature (see, for instance [12]) and we know that a)
Elitist GAs will find the best solution given enough
time, b) Such GAs may find solutions very close to the
best solution in logarithmic time and c) Some “simple”
problems may lead the classical GAs astray lest some
modifications are introduced [13]. Previous studies [14]
have statistically proven that the Vasconcelos’ variation
of a GA (VGA) performs very favorably and avoids the
pitfalls present in more naive variations. Since the
problem we are trying to tackle is of the NP kind, it is
natural to use a VGA in an attempt to reach very good
solutions in short time. In what follows we briefly
describe the VGA.

2.3.1 VGA
1. a) N ← 50 (individuals in the population)
 b) Pc ← 0.9 (probability of crossover)
 c) Pm ← 0.005 (probability of mutation)
 d) G ← 500 (number of generations)
2. Calculate β (the number of bits to mutate) as:

][mPlNceiling ××=β
where l = bits in the individual’s genome (throughout
we assume binary encoding of the solutions).
3. Generate population P(1) randomly.

5. For 1←t to G
6. Evaluate P(t).
7. Sort the individuals in the population according to
 their fitness from best to worst.
8. Retain the best N individuals.
9. For 2/1 Ntoi ←
10. Select individuals i and N-i+1 (say A and Z).
11. Cross individuals A and Z with probability Pc. If
 A and Z are crossed, incorporate their offspring
 to the population.
12. Endfor
13. Mutate β bits (in the new individuals) randomly.
14. Endfor

In step 6, obviously, only the new individuals are
evaluated. In step 11, crossover is annular. That is,
individuals’ chromosomes are considered not strings,
but rather rings in the sense that the last bit in the
genome is connected to the first. The size of the ring is

2/l . Annular crossover is illustrated in Figure 4.

Fig. 4. Annular crossover.

3 Metrics
The problem that we would like to solve may be simply
stated as follows: Given a table such as Table 1 but
lacking the data corresponding to the class columns,
what is the best way to fill in these columns such that
adequate clustering is achieved? We may encode any
assignment as a string of size δ consisting of a set of
numbers between 1 and C. For example, if C=3 and δ =
20, the string 12312312312312332132 is a possible
solution; the string 22211133333322211123 is another,
and so on. What we would like to answer is which of the
two solutions possible in our example is better? In order
to do this we must define a measure of goodness: a

metric by which to judge the hypothetical solutions.
From Figure 3 we see that we must select the column
whose accumulated value is largest; from the labeling
algorithm we see that the accumulated value comes from
the distance between the objects in δ and the neurons.
Hence, we proposed the following 4 metrics. In each, the
first step is to calculate the distance matrix ∆ , thus:

()

η

ϕ

,...,1
,...,1

)(

1 1
2/1

=
=

∑
=

∑
=

−=∆

i
Cj

lC

l k ikoikwij (8)

3.1 Metric 1: Absolute Distance

∑
=

∑
= =

∆−∆
=

η

1 1 ,...1
)(

1 i

C

j Cj
ijijmax

D (9)

In D1 we a) Select a row of ∆ , b) Find its largest
element, c) Get the absolute value of the difference from
the largest element to the rest of the elements in the row,
d) Add these differences. Repeat steps (a) to (d) for all
neurons and accumulate the differences. We look for the
largest possible D1 resulting from the cluster assignment.

3.2 Metric 2: Euclidean Distance

∑
=

∑
= =

∆−∆
=

η

1 1

2

,...1
)(

2 i

C

j Cj
ijijmax

D (10)

In D2 we a) Select a row of ∆ , b) Find its largest
element, c) Get the euclidean distance from the largest
element to the rest of the elements in the row, d) Add
these distances. Repeat steps (a) to (d) for all neurons
and accumulate the distances. We look for the largest
possible D2 resulting from the cluster assignment.

3.3 Metric 3: Clustered Absolute Distance

∑
= =∆

∑
=

∑
= =

∆−∆
=

C

i ijkmaxindex
j

C

k Ck
jkjkmax

iC
D

1)]([
1 1 ,...1

)(
1

3

η

 (11)

In D3 we follow a procedure similar to D1 but we further
establish that C partial values are calculated: one for
every case in which the maximum value corresponds to
a given cluster. Then, the average is obtained and the C
partial values are finally added.

3.4 Metric 4: Clustered Euclidean Distance

∑
=

=∆

∑
=

∑
= =

∆−∆
=

C

i
ijkmaxindex

j

C

k Ck
jkjkmax

iC
D

1
)]([

1 1

2

,...1
)(

1
4

η

(12)
This metric is analogous to D3, but the distance
calculated is euclidean, rather than absolute.

The rationale behind all four ways of determining the
adequacy of matrix ∆ is similar: since labeling is
achieved by selecting the largest value in ∆ ’s rows, we
reason in reverse and look for a cluster assignment such
that the overall value is maximized.

3.5 Preliminary Results
Using known data we tested all four metrics. The
clustered ones were found to be better than their
counterparts. Furthermore, D4’s behavior originated
smaller variances than D3’s and we considered,
therefore, that D4 was the best choice. We proceeded to
test the GA in a way such that the populations consisted
of binary strings. Our first runs yielded unsatisfactory
results. The number of elements from δ which were
correctly assigned to the original (known) clusters was
not significant. We, therefore, modified D4 by
additionally requiring that there be no more than a pre-
specified percentage (P) of elements in each cluster
which exceeded proportionally equivalent cluster sizes.
For example, if 201=δ , C = 3 and P = 5, we would
require that no more than 367± elements be assigned to
clusters 1, 2 and 3. We assume that, in a well conducted
poll, it is reasonable to assume that samples will yield
analogous cluster sizes. For the purposes of further
discussion we refer to this modified metric as D405; to
the metric where P = 10 we refer as D410; to either one
of them we refer to as D4x.

4 Experimental Results
As stated before, once the way of measuring a desirable
assignment has been established, we may apply the
VGA to obtain a reasonable approximation to the best
such assignment. However, there are two further
technical problems we must address.

4.1 Modifications to the Fitness Function
First, in a binary encoding, such as the one we selected,
as a result of crossover and mutation, invalid genomes
may arise. For example, if C = 5 and 200=δ , the size
of the genome Γ is 600 (which is derived from

)](2[log Cceiling×=Γ δ). However, all combinations
for which 5≥C are invalid. To avoid this
inconvenience, the fitness function was modified so as
to detect any invalid combination and randomly replace
it by a valid one. Second, usage of the D4x metrics
originates unfeasible genomes and finding the feasible
ones which comply with the desired percentages
constitutes, in itself, a thorny problem. Fortunately, a
simple and effective scheme allows us to cope with it
[18]. The procedure is to change a problem with
constraints into an unconstrained one by applying the
following transformation:

≠∑

=
−

=Γ
otherwisexD

ps
s

i p
KKF

4
1)((13)

where)(ΓF is the fitness of genome, K is a large
constant [O(109)], p is the number of constraints and s is
the number of these which have been satisfied. K’s only
restriction is that it should be large enough to insure that
any non-feasible individual is graded much more poorly
than any feasible one. Here the algorithm receives
information as to how many constraints have been
satisfied but is not otherwise affected. Once these two
modifications are incorporated into the fitness
calculation of VGA we are in a position to tackle the
problem object of this work.

4.2 Experiments
We selected 5 functions whose characteristics were
known in advance, i.e. we knew a priori the number of
clusters into which the information was classified and
which objects belonged to each of the clusters. We then
run our algorithms (training and VGA). Finally, we
compared the known clusters and memberships with the
ones the VGA found. This was done with D410 and D405.
Table 2 shows the results from D405 and D410.

Problem Features Samples 10.00% 5.00%
1 13 161 0.8419 0.7868
2 7 437 0.4766 0.4737
3 7 437 0.5948 0.8258
4 7 437 0.5763 0.5833
5 7 437 0.5571 0.7200

Table 2. Automatic Clustering Results

To appreciate the significance of the results we must
analyze the type of data for every problem.

4.2.1 Problem 1
This data was taken from an actual physical sample of
three different types of wines. Each wine is identified by
13 different chemical characteristics. Notice that the
number of samples is the smallest of the series. There
are 2322 or 961054.8 ⋅≈ possible configurations. The
algorithm performed in the 80% range of hits.

4.2.2 Problem 2
This data was produced artificially: 6 random numbers
were fed to three arbitrary functions. The seventh feature
was the function of the remaining 6. The number of
samples was 436. There are 2437 or 1311055.3 ⋅≈
possible configurations. Considering the almost total
randomness of the data and the huge problem size, it is
to be expected that the algorithm does not perform
satisfactorily.

4.2.3 Problem 3
This data was produced from the same set as the
previous one. However, an important modification was
introduced: every random number (between 0 and 1)
was input to a trigonometric function and these values
were fed to the functions. In this case, although the
problem landscape is analogous to the one in 4.2.2, the
behavior was significantly better. This is, of course, due
to the fact that the restricted inputs defined
distinguishable clusters.
For the 5% case, the algorithm performed on the 80%
range of success.

4.2.4 Problem 4
In this set we, again, used the functions of 4.2.2-3.
However, this time we explored the whole range of
values of the trigonometric functions. Therefore, we re-
assigned its randomness to the data and the clusters

remained unclear.
4.2.5 Problem 5
In this set we increased the generating functions while
keeping well defined and restricted data for them. Again
we obtained reasonable results: close to 72% of
successes.

5 Conclusions
We have shown that it is possible to define reasonable
measures of adequacy in arbitrary sets of data. Although
our results are preliminary, they show an interesting
promise. The algorithm, first, was tested to determine
the viability of the approach. Secondly, we tried out four
possible metrics and concluded that the clustered
euclidean distance was the most promising. Thirdly, we
discovered that even this preliminary best had to be
complemented by a restriction leading to uniformity of
the data. We assumed this to be a reasonable
modification. Next we explored two differently stringent
spreads. Our results show that the most stringent has
better yields. Finally, by selecting different sets of
clusters we were able to ascertain that the results are in
accordance with our intuition: random data is unable to
be a source of identifiable clusters. Finally, by
importantly increasing the size of the genome, we were
able to show that the method is applicable even in those
cases where the solution landscape is quite large.
 The foregoing conclusions largely depend on an
efficient training algorithm and an efficient genetic
algorithm. It is natural to continue our investigation in
the following directions: a) Test the metrics on larger
sets of functions with the aim of possibly refining these
metrics; b) Cover a broader range of clusters; c) Expand
the training methods. We plan to experiment with fuzzy
Kohonen networks; d) Enhance the algorithm to
determine, automatically, the number of clusters. Here
we assumed such number was given.
 We feel that this is a promising line of research.
We have achieved the automatic assignment of elements
of a data set to the correct unknown clusters even in the
absence of information regarding the data. We believe
that this will have important implications for data
mining applications. It is also to be stressed that by
merging two soft-computing methods (neural networks
and genetic algorithms) we have shown their mutual
flexibility and versatility.

References:
[1] Devijver, P.A. and Kittler, J., Pattern Recognition: A
 Statistical Approach, Prentice-Hall International,
 Englewood Cliffs, NJ, 1980.
 [2] Duda, R. O. and Hart, P. E., Pattern Classification
 and Scene Analysis, Wiley-Interscience, New York,
 1973.
[3] Fukunaga, K., Introduction to Statistical Pattern
 Recognition, 2nd Ed., Academic Press, New York,
 1990.
[4] Schalkoff, R., Pattern Recognition: Statistical,
 Structural and Neural Approaches, John Wiley &
 Sons, New York, 1992.
[5] Kohonen, T., Self-Organizing Maps, Springer,
 Berlin, 2001.
[6] Duda, D., and Hart, P.E., op. cit.
[7] Kohonen, T., Barna, G. and Chrisley, R., Statistical
 Pattern Recognition with neural networks.
 Benchmarking studies, IEEE International
 Conference on Neural Networks, vol I, pp. 61-68,
 1988, San Diego, CA.
[8] Haykin, S., Neural Networks: A Comprehensive
 Foundation, MacMillan, 1999.
[9] Kohonen, T., Self-organized formation of
 topologically correct feature maps, Biological
 Cybernetics, 1982, vol. 43, pp. 59-69.
[10] Kuri, A., "A Universal Eclectic Genetic Algorithm
 for Constrained Optimization", 1998, Proceedings
 6th European Congress on Intelligent Techniques &
 Soft Computing, EUFIT'98, pp. 518-522.
[11] MIT Staff, Data Engine, from Data to Information,
 MIT Press, 1999.
[12] Back, T., Evolutionary Algorithms in Theory and
 Practice, Oxford University Press, New York, 1996.
[13] Kuri, A., A Comprehensive Approach to Genetic
 Algorithms in Optimization and Learning. Theory
 and Applications, Vol. 1. Instituto Politécnico
 Nacional, pp 270, 1999.
[14] Kuri, A., A Methodology for the Statistical
 Characterization of Genetic Algorithms, II Mexican
 International Congress on Artificial Intelligence,
 submitted for publication.

