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Abstract. The analysis of data sets of unknown characteristics usually demands that subsets (or clusters) of the data are 
identified in such a way that the members of any one such cluster display common (in some sense) characteristics. In 
order to do this we must determine a) The number of clusters, b) The clusters themselves and c) The labeling of every 
element in the data set such that each element belongs uniquely to one of the clusters. We discuss an algorithm which 
allows us to solve (b) and (c); we assume that (a) is given. We show that the so-called labeling problem may be solved by 
minimizing an adequate measure of distance. We discuss several such metrics, the corresponding minimization (genetic) 
algorithm and offer some results derived from its application. 
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1   Introduction 
There are several ways to attempt the identification of 
clusters in a set of data [1], [2], [3]. If we have 
information regarding the source of the data we may 
apply classical and/or heuristic methods with relative 
success [4]. Here, however, we assume that nothing is 
known about the data under study and apply the method 
originally proposed by Kohonen [5] which originates the 
so-called self-organizing maps (SOM). In this method, 
basically, a set of vectors (or “neurons”) η  is defined. 
The cardinality of η  ( η ) is typically smaller than that 
of the objects in δ (the data set) i.e. δη ≤ . The 
dimensionality of every vector in δ  is determined by 
the number of features (ϕ ) of each object and every 
such object is, thus, defined in a ldimensiona−ϕ  space. 
The neurons in a self-organizing map are simultaneously 
defined on two spaces: a) A ldimensiona−ϕ  space of 
features and b) A “geographic” map of  γ  dimensions 
(typically γ = 2 or γ = 3). The training algorithm then 
operates on the neurons in a way such that neighboring 
neurons in γ  space (hence the name “SOM”) 
correspond to elements which share some (possibly non-
linear) attributes in δ  space. Throughout this process it 
is relatively simple to overcome a priori limitations 
present in methods which rely on classical measures of 
distance (such as Euclidean or Mahalanobis’ [6]). Once 
a set of neurons is trained (i.e. once its coordinates in 
δ space are determined), however, one is faced with the 
problem of finding the boundaries between the neurons 
in a SOM which distinguish one cluster from another. A 
simple example will illustrate this fact. Assume that 

200=δ , 4=ϕ , 16=η , 2=γ  and  that the (known) 
number of classes (C) is 3. Let us further assume that 
through some yet unspecified method the neurons 
corresponding to each of these 3 classes has been found, 
yielding a map as in Figure 1. Notice that, by definition, 
all neurons for C = i  (i = 1, 2, 3) are “physically” close 
in a euclidean sense. The process of assigning a label to 
every group of clustered neurons usually consists of 
setting a class number for every neuron from a 
previously known classification. In our example the data 
would assume a form analogous to the one shown in 
Table 1. In this table the heading “F1” to “F4” denote 
feature 1 to 4; class 1 consists of k-1 elements, class 2 of 
m-k and class 3 of 200-m elements, respectively.  

There are alternative ways of  displaying class member-
ship but we will adhere to the one illustrated. When the 
Ci columns are known, other unknown elements which 
stem from the same source (H) giving rise to δ  may be 
classified successfully, as has been shown in the past 
[7]. 
 

 
Fig. 1. A Labeled SOM with 3 Classes 
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Table 1. Labeling Data 

 
In the absence of the Ci columns above, one must resort 
to some method which assigns class membership to 
every element in δ , so as to achieve a tabular structure 
similar to the one of Table 1. In the example above there 
are 320 (roughly equivalent to 1090) possible 
assignments. Clearly, any exhaustive enumerative 
approach is out of the question. We will, therefore, 
appeal to a genetic algorithm (GA) to find an 



approximation to the best possible assignment. 
However, before using any optimization method we 
must first define a measure of fitness of an assignment. 
One of the contributions of this paper is the 
identification of a family of adequate metrics. 
 The rest of the paper is organized as follows. In 
section 2 we describe the details of the training and 
labeling algorithms as well as the GA we used. In 
section 3 we describe several metrics we tested and how 
we arrived at the “best” one. In section 4 we describe the 
application of the method to a set of simple 
classification problems and the results we obtained. 
Finally, in section 5 we  offer our conclusions and point 
out future lines of research. 
 
2  Algorithms 
In what follows we describe the three basic algorithms 
on which our method relies: a) The SOM training 
algorithm, b) The SOM labeling algorithm and c) 
Vasconcelos’ GA. Our description is succint. The 
interested reader may see [8], [9], [10] for a more 
detailed description.  
 
 
2.1 Training Algorithm 
1. By convention we assume that 2γ =  and a grid of 
size ηη × . All the neurons are assumed to be in the 
points of a grid in γ  space where both coordinates are 
positive integers. We also assume that the horizontal and 
vertical distance between adjacent neurons is 1, as 
illustrated in figure 2. Thus, the coordinates in γ  space 
of  all neurons correspond to integers between 1 and 
η ; i.e. (1,1), ... , ( η , η ). 

2. All neurons are initially assigned random coordinates 
(typically between 0 and 1) in ϕ  space. Thus, the 
coordinates in ϕ  space for all neurons define a 

ldimensiona−ϕ  vector. 
3. An epoch counter n is initialized ( 1←n ). One epoch 
is the presentation of all δ  objects to the network. 

4. A learning rate α(n)  for epoch n is defined. Typically 
the initial learning rate is close to 1. 
5. A feedback function from neuron i to the winning 

neuron k in epoch n is defined as )
σ(n)
dexp((n)r 2

2
ik

ik −= ; 

where )(nσ  is the learning radius for epoch n and dik is 

the euclidean distance between neuron i and neuron k. 
6. The learning radius is initialized. Typically, in the 
beginning, σ(n)  takes a value larger than 3. 
7. A learning factor αf  is defined. It is assigned an 
initial value close to 1 (say 0.99).  
8. A radial factor σf  is defined. It is, likewise, assigned 
an initial value close to 1 (say 0.995). 
9. An object counter t is initialized (t←1). 
10. Training object x(t) is presented to the network. 
11. The winning neuron is determined by calculating the 
euclidean distance between all neurons and x(t) in ϕ  
space. 
12. All the vectors in ϕ  space are modified as per 
equation (1). 
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         1←t  
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14. Is a stopping criterion reached? 
 No:  Go to step 10 
 Yes: End 
It should be noted that the mapping between the 

ldimensiona−ϕ  space to the ldimensiona−γ  one 
occurs when rik(n) is found since 
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 Two further considerations regarding this 
algorithm are in order. First, the exponential form of (2) 
resembles a normal distribution centered in dik with 
standard deviation )(nσ . This implies that the influence 
of the winning neuron affects, initially, all neurons in the 
network (hence a large initial value for σ(n)); thereafter 
the neighborhood size of the winning neuron is made 
progressively smaller. Second, since the learning and 
radial factors are updated as per (4),  
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the adjustment on the coordinates of the neurons is 



dynamically done in a way that insures that, as training 
advances, the changes in the coordinates are more subtle 
every time the data is traversed. 
 

 
Fig. 2. Distance between Neurons in γ  space 

 
 
2.2 Labeling Algorithm 
The algorithm just described guarantees that neurons 
which “point” to similar objects are close to each other 
in γ  space. But, in order to exploit the information 
already contained in the network and apply it to new 
data (i.e. to attempt generalization), we must be able to 
identify the boundaries between the various groups of 
neurons in a way that establishes a clear distinction 
between the elements of a cluster and those of another. 
The separation that does exist between the elements of 
any two clusters may be derived from additional 
knowledge relating to elements whose membership is 
already known. One possible algorithm that has been 
used successfully in the past [11] is as follows. 
 Given N classes and a set of δ  samples 

(objects) jkO
r

 each one belonging to a class Ci, 

i=1,...,N, and making M=η  for convenience, we define 
a matrix ∆  of NM ×  elements. Denote the number of 

elements in class i with iC . Clearly, ∑
=

=
N

i
iC

1
δ . 

Then, 
1. Initialize all elements in P

r
 to 0. 

2. For i=1 to N 

3.    For j=1 to M 
4.      For k=1 to jC  

5.      Calculate the euclidean distance dij from neuron i 
( iwr )  to object jkO

r : 

2
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6.         Make  
ijdijij /1+∆←∆                              (6) 

7.      endfor 
8.   endfor 
9. endfor 
10. Calculate 

M1,...,mfor
N1,...,n

}mn,{maxmI =
=
∆=              (7) 

11. Assign the label of class Im to neuron m. 
 
This algorithm has two possible flaws: a) There may be 
no unique minimum and b) There may be classes for 
which no neuron is assigned. These two possible special 
cases are usually accounted for heuristically. For the 
purposes of the present discussion we shall assume that 
the special cases have already been satisfactorily taken 
care of. 
 A hypothetical distance matrix ∆ , where M=16 
and N=3 is shown in Figure 3.  
 

 
Fig. 3. An example of a distance matrix. 

 
In Figure 3 we show the accumulated distances from 
each of the 16 neurons to the objects for each of the 
three classes. The last column displays the membership 
class according to a criterion of maximization, as per the 
algorithm above. The leftmost two columns (labeled “i” 
and “j”) correspond to the coordinates of the neurons in 



γ  space. 
 
 
2.3 Genetic Algorithm 
Genetic Algorithms (GAs) are optimization meta-
heuristics which differ from other optimization methods 
in two essential ways: a) They explore the solution 
landscape in several simultaneous loci and b) The 
algorithm explores the actual solution landscape but 
modifies its own behavior by changing a mapping of the 
space of encoded hypothetical solutions into the space of 
the actual solutions. They form part of what is now 
termed Evolutionary Computation. The “evolutionary” 
part of the name comes from the fact that the mentioned 
hypothetical solutions are refined step-by-step by 
preserving the most promising candidates from a so-
called “population” which is, simply put, a set of viable 
solutions to the problem at hand (each solution in the set 
is an “individual” of the population). From a suggestive 
analogy with the living beings, the elements of the 
encoded solutions are called genes (hence the name 
“genetic”), the decoded solutions are the phenotypes, 
whilst their encoded counterparts are called the 
genotypes. GAs have been widely treated in the 
literature (see, for instance [12]) and we know that a) 
Elitist GAs will find the best solution given enough 
time, b) Such GAs may find solutions very close to the 
best solution in logarithmic time and c) Some “simple” 
problems may lead the classical GAs astray lest some 
modifications are introduced [13]. Previous studies [14] 
have statistically proven that the Vasconcelos’ variation 
of a GA (VGA) performs very favorably and avoids the 
pitfalls present in more naive variations. Since the 
problem we are trying to tackle is of the NP kind, it is 
natural to use a VGA in an attempt to reach very good 
solutions in short time. In what follows we briefly 
describe the VGA. 
  
2.3.1 VGA 
1.  a) N ←  50 (individuals in the population) 
 b) Pc ←  0.9  (probability of crossover) 
 c) Pm ←  0.005 (probability of mutation) 
 d) G ←  500 (number of generations) 
2. Calculate β  (the number of bits to mutate) as: 

][ mPlNceiling ××=β  
where l  = bits in the individual’s genome (throughout 
we assume binary encoding of the solutions). 
3. Generate population P(1) randomly. 

5. For 1←t  to G 
6.     Evaluate P(t). 
7.     Sort the individuals in the population according to  
        their fitness from best to worst. 
8.     Retain the best N individuals. 
9.     For 2/1 Ntoi ←  
10.       Select individuals i and N-i+1 (say A and Z). 
11.       Cross individuals A and Z with probability Pc. If  
            A and Z are crossed, incorporate their offspring  
            to the population. 
12.    Endfor 
13.    Mutate β  bits (in the new individuals) randomly. 
14. Endfor 

 
In step 6, obviously, only the new individuals are 
evaluated. In step 11, crossover is annular. That is, 
individuals’ chromosomes are considered not strings, 
but rather rings in the sense that the last bit in the 
genome is connected to the first. The size of the ring is 

2/l . Annular crossover is illustrated in Figure 4. 
 

Fig. 4. Annular crossover. 
 

3  Metrics 
The problem that we would like to solve may be simply 
stated as follows: Given a table such as Table 1 but 
lacking the data corresponding to the class columns, 
what is the best way to fill in these columns such that 
adequate clustering is achieved? We may encode any 
assignment as a string of size δ  consisting of a set of 
numbers between 1 and C. For example, if  C=3 and δ = 
20, the string 12312312312312332132 is a possible 
solution; the string 22211133333322211123 is another, 
and so on. What we would like to answer is which of the 
two solutions possible in our example is better? In order 
to do this we must define a measure of goodness: a 



metric by which to judge the hypothetical solutions. 
From Figure 3 we see that we must select the column 
whose accumulated value is largest; from the labeling 
algorithm we see that the accumulated value comes from 
the distance between the objects in δ  and the neurons. 
Hence, we proposed the following 4 metrics. In each, the 
first step is to calculate the distance matrix ∆ , thus:  
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3.1 Metric 1: Absolute Distance 
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In D1 we a) Select a row of ∆ , b) Find its largest 
element, c) Get the absolute value of the difference from 
the largest element to the rest of the elements in the row, 
d) Add these differences. Repeat steps (a) to (d) for all 
neurons and accumulate the differences. We look for the 
largest possible D1 resulting from the cluster assignment. 
 
3.2 Metric 2: Euclidean Distance 
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In D2 we a) Select a row of ∆ , b) Find its largest 
element, c) Get the euclidean distance from the largest 
element to the rest of the elements in the row, d) Add 
these distances. Repeat steps (a) to (d) for all neurons 
and accumulate the distances. We look for the largest 
possible D2 resulting from the cluster assignment. 
 
3.3 Metric 3: Clustered Absolute Distance 
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In D3 we follow a procedure similar to D1 but we further 
establish that C partial values are calculated: one for 
every case in which the maximum value corresponds to 
a given cluster. Then, the average is obtained and the C 
partial values are finally added. 
 

3.4 Metric 4: Clustered Euclidean Distance 
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(12) 
This metric is analogous to D3, but the distance 
calculated is euclidean, rather than absolute. 

 
 
The rationale behind all four ways of determining the 
adequacy of matrix ∆  is similar: since labeling is 
achieved by selecting the largest value in ∆ ’s rows, we 
reason in reverse and look for a cluster assignment such 
that the overall value is maximized. 
 
3.5 Preliminary Results 
Using known data we tested all four metrics. The 
clustered ones were found to be better than their 
counterparts. Furthermore, D4’s behavior originated 
smaller variances than D3’s and we considered, 
therefore, that D4 was the best choice. We proceeded to 
test the GA in a way such that the populations consisted 
of binary strings. Our first runs yielded unsatisfactory 
results. The number of elements from δ  which were 
correctly assigned to the original (known) clusters was 
not significant. We, therefore, modified D4 by 
additionally requiring that there be no more than a pre-
specified percentage (P) of elements in each cluster 
which exceeded proportionally equivalent cluster sizes. 
For example, if 201=δ , C = 3 and P = 5, we would 
require that no more than 367±  elements be assigned to 
clusters 1, 2 and 3. We assume that, in a well conducted 
poll, it is reasonable to assume that samples will yield 
analogous cluster sizes. For the purposes of further 
discussion we refer to this modified metric as D405; to 
the metric where P = 10 we refer as D410;  to either one 
of them we refer to as D4x.  
 
 
4 Experimental Results 
As stated before, once the way of measuring a desirable 
assignment has been established, we may apply the 
VGA to obtain a reasonable approximation to the best 
such assignment. However, there are two further 
technical problems we must address.  
 



4.1 Modifications to the Fitness Function 
First, in a binary encoding, such as the one we selected, 
as a result of crossover and mutation, invalid genomes 
may arise. For example, if C = 5 and 200=δ , the size 
of the genome Γ  is 600 (which is derived from 

)](2[log Cceiling×=Γ δ ). However, all combinations 
for which 5≥C  are invalid. To avoid this 
inconvenience, the fitness function was modified so as 
to detect any invalid combination and randomly replace 
it by a valid one. Second, usage of the D4x metrics 
originates unfeasible genomes and finding the feasible 
ones which comply with the desired percentages 
constitutes, in itself, a thorny problem. Fortunately, a 
simple and effective scheme allows us to cope with it 
[18]. The procedure is to change a problem with 
constraints into an unconstrained one by applying the 
following transformation: 
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where )(ΓF  is the fitness of genome, K is a large 
constant [O(109)], p is the number of constraints and s is 
the number of these which have been satisfied. K’s only 
restriction is that it should be large enough to insure that 
any non-feasible individual is graded much more poorly 
than any feasible one. Here the algorithm receives 
information as to how many constraints have been 
satisfied but is not otherwise affected. Once these two 
modifications are incorporated into the fitness 
calculation of VGA we are in a position to tackle the 
problem object of this work. 
 
4.2 Experiments 
We selected 5 functions whose characteristics were 
known in advance, i.e. we knew a priori the number of 
clusters into which the information was classified and 
which objects belonged to each of the clusters. We then 
run our algorithms (training and VGA). Finally, we 
compared the known clusters and memberships with the 
ones the VGA found. This was done with D410 and D405. 
Table 2 shows the results from D405 and D410. 
 

Problem Features Samples 10.00% 5.00%
1 13 161 0.8419 0.7868
2 7 437 0.4766 0.4737
3 7 437 0.5948 0.8258
4 7 437 0.5763 0.5833
5 7 437 0.5571 0.7200

 
Table 2. Automatic Clustering Results 

 
To appreciate the significance of the results we must 
analyze the type of data for every problem. 
 
4.2.1 Problem 1 
This data was taken from an actual physical sample of 
three different types of wines. Each wine is identified by 
13 different chemical characteristics. Notice that the 
number of samples is the smallest of the series. There 
are 2322 or 961054.8 ⋅≈  possible configurations. The 
algorithm performed in the 80% range of hits. 
 
4.2.2 Problem 2 
This data was produced artificially: 6 random numbers 
were fed to three arbitrary functions. The seventh feature 
was the function of the remaining 6. The number of 
samples was 436. There are 2437 or  1311055.3 ⋅≈  
possible configurations. Considering the almost total 
randomness of the data and the huge problem size, it is 
to be expected that the algorithm does not perform 
satisfactorily. 
 
4.2.3 Problem 3 
This data was produced from the same set as the 
previous one. However, an important modification was 
introduced: every random number (between 0 and 1) 
was input to a trigonometric function and these values 
were fed to the functions. In this case, although the 
problem landscape is analogous to the one in 4.2.2, the 
behavior was significantly better. This is, of course, due 
to the fact that the restricted inputs defined 
distinguishable clusters. 
For the 5% case, the algorithm performed on the 80% 
range of success. 
 
4.2.4 Problem 4 
In this set we, again, used the functions of 4.2.2-3. 
However, this time we explored the whole range of 
values of the trigonometric functions. Therefore, we re-
assigned its randomness to the data and the clusters 



remained unclear. 
4.2.5 Problem 5 
In this set we increased the generating functions while 
keeping well defined and restricted data for them. Again 
we obtained reasonable results: close to 72% of 
successes. 
 
5 Conclusions 
We have shown that it is possible to define reasonable 
measures of adequacy in arbitrary sets of data. Although 
our results are preliminary, they show an interesting 
promise. The algorithm, first, was tested to determine 
the viability of the approach. Secondly, we tried out four 
possible metrics and concluded that the clustered 
euclidean distance was the most promising. Thirdly, we 
discovered that even this preliminary best had to be 
complemented by a restriction leading to uniformity of 
the data. We assumed this to be a reasonable 
modification. Next we explored two differently stringent 
spreads. Our results show that the most stringent has 
better yields. Finally, by selecting different sets of 
clusters we were able to ascertain that the results are in 
accordance with our intuition: random data is unable to 
be a source of identifiable clusters. Finally, by 
importantly increasing the size of the genome, we were 
able to show that the method is applicable even in those 
cases where the solution landscape is quite large. 
 The foregoing conclusions largely depend on an 
efficient training algorithm and an efficient genetic 
algorithm. It is natural to continue our investigation in 
the following directions: a) Test the metrics on larger 
sets of functions with the aim of possibly refining these 
metrics; b) Cover a broader range of  clusters; c) Expand 
the training methods. We plan to experiment with fuzzy 
Kohonen networks; d) Enhance the algorithm to 
determine, automatically, the number of clusters. Here 
we assumed such number was given. 
 We feel that this is a promising line of research. 
We have achieved the automatic assignment of elements 
of a data set to the correct unknown clusters even in the 
absence of information regarding the data. We believe 
that this will have important implications for data 
mining applications. It is also to be stressed that by 
merging two soft-computing methods (neural networks 
and genetic algorithms) we have shown their mutual 
flexibility and versatility. 
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