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Abstract: - This paper addresses the question of controlling multi-joint systems using a sensory feedback, at the light of 
control theory and GRNN learning principles. A generic Sensory-Motor Control Model (SMCM) is firstly presented 
that implicitly solves the inverse kinematics problem. Computational implementations of SMCM requires the 
knowledge of sensory motor transforms that are directly dependent on the multi-joint structure that is controlled. To 
avoid the dependency of SMCM to the analytical knowledge of these transforms, a non parametric learning approach is 
developed which identifies non linear mappings between sensory signals and motor commands involved in SMCM. 
The learning phase is handled through a General Regression Neural Network (GRNN) simulated using near neighbors 
search algorithms (kd-tree). The resulting adaptive SMCM (ASMCM) is intensively tested within the scope of hand-
arm reaching movements. ASMCM shows to be very effective and robust at least for this task. Its generic properties 
and effectiveness allow to foresee wide area of application.  
 
Key-Words: - Non Parametric Learning, Sensory-Motor Maps, General Regression Neural Networks, Adaptive Control 
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1 Introduction 
Sensory-motor controlled systems exhibit non linear 
mappings between sensory signals and motor 
commands, that are in many respects basic components 
involved in the control of complex multi-articulated 
chains. To cope with the need for plasticity (adaptation 
to changes), generic control performance (similar 
control principles for various kinds of mappings, 
various kinds of articulated chains or neuro-anatomical 
variability among individuals) and anticipation 
(predictive capability and optimization of movements), 
it is more or less accepted in the neuro-physiology 
community that these mappings are learned by 
biological organisms rather than pre-programmed. For 
the design of artificial control system, the biological 
plausibility of the control mechanisms involved is not 
really considered as an issue. Nevertheless, adaptive, 
predictive and generic capabilities of controlling 
components are indeed key characteristics that have 
been carefully addressed for a long time, in particular 
within the optimal control and robotics communities. 

Furthermore, in the scope of complex artificial 
system design, analytical equations that drive the 
dynamics and the kinematics of the system could be 
difficult to extract, and the corresponding solution to 
the set of differential equations fastidious to estimate. 
Setting up control strategies for complex system control 
is consequently not a simple task. In this context, 
learning part of the control strategy from the 

observation of the system behavior could be an 
appealing and efficient approach. The aim of this paper 
is to present a generic learning approach for the control 
of sensory motor systems. 
 
2 Controlling Sensory-Motor Systems 
Any motor system can be characterized in a state (or 
phase) space where the state of the system is supposed to 
be completely determined at any time by a point in this 
space. Time evolution of the system results in the 
development of a trajectory in the state space.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 : System controlled with sensory feedback  
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For sensory-motor systems, the state is observed through 
sensory signals (observable outputs), as shown in Fig. 1. 
Thus, the track of the evolution within the state space 
results in the development of a trajectory within a 
sensory space. The mapping M between sensory outputs 
and state characterizations is generally highly non linear 
and projective (the dimensionality of the state space is 
higher than the dimensionality of the sensory space). 
When the system is controlled using a sensory feedback, 
the task affected to the system is specified in a space 
homogeneous to the sensory space labeled task space in 
figure 1. The error signal measured between sensory 
outputs and task inputs is finally used as a feedback to 
update the state of the system. The projective transforms 
M are generally well-defined functions, with a 
redundancy in the articulated systems characterized by 
an excess of degrees of freedom, e.g. the transformation 
between the input and the output is characterized by a 
many-to-one transform. Thus, the same sensory outputs 
may be observed for numerous different states of the 
system. Consequently, forward mapping M is well-
defined while the inversion of M is an ill-posed problem. 
Control strategies of Sensory Motor Systems (SMS) 
require some how either the knowledge of the forward 
mapping M or the knowledge of its pseudo inverse: M-1. 
Both are closely related to the structure of the SMS 
itself.  
 
3 The Sensori-Motor Control Model 

(SMCM) 
Numerous solutions exist to control SMS (see references 
[1], ..,[5] for some approaches that exploit learning 
mechanisms). We present here a general model that has 
been proposed to control various kind of articulated 
chains, in particular hand-arm systems [6]. For this 
model, the update of the system state q is computed on 
the basis of the error E between the current sensory 
outputs a and the task specification ac, according to a 
gradient descent strategy. 
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 is the Jacobian matrix of the operator M, g is a 

gain function and ∇ the gradient operator. 
 
In order to ensure the stability of the system and to 

generate damped behaviors, a nonlinear function g and 
a second order filter have been introduced. The 
nonlinear function g has a sigmoïd shape: the gain of 
this function increases significantly when the error 
between the observable position and the reference target 
position goes towards zero. Stability and asymptotic 
properties of such a model have already been studied in 
[6]. For SMCM, the M transform enters into the 
computation of the gradient of the error signal ||a-ac|| as 
shown in  equation (1). To implement this model, all 

coefficients of the Jacobian matrix )(
q
M
∂
∂

should be 

known for all values of the state vector q. These 
coefficients depend directly on the structure of the 
articulated chain to be controlled. Furthermore, for any 
articulated chain, a specific jacobian matrix should be 
calculated. 
 
4 Learning sensory-motor mappings 

involved in SMCM 
 The previous requirement for an analytical knowledge 
of the sensory-motor mapping restricts the potential use 
of SMCM to well defined articulated systems. One way 
to overcome such limitation is to introduce a learning 
scheme, a functionality that most of biological systems 
have implemented.   
      
4.1 Non Parametric Learning v.s. Parametric 
Learning 
Two distinct and competing approaches are available 
when facing the problem of learning non linear 
transforms (NLT) and in particular non linear mappings 
involved in multi-joint control systems: parametric 
learning (PL) and non parametric learning (NPL) (Cf. 
[7] for a pioneer and detailed synthesis on PL and NPL, 
and [8] for a more recent review of PL and NPL models 
with biological relevance arguments regarding internal 
sensory-motor maps). The fundamental difference 
between PL and NPL is that PL addresses the learning 
essentially globally while NPL addresses it  much more 
locally. In other words, PL methods try to learn non 
linear transforms over their whole domain of validity. 
This means that if a change in the environment occurs 
locally, it will potentially affect the learning process 
every where in  the definition domain of the transform. 
Conversely, NPL learns the properties of the transform 
in the neighborhood of each point of interest within the 
definition domain of the transform. Thus, a local update 
in the learning process does not affect the rest of the 
learned definition domain. Multi layer Perceptron [9,10] 
are instances of the PL class with synaptic weights as 
parameters, while Probabilistic Networks or General 
regression Neural networks [11,12] are instances of the 
NPL class. 



 

Biological relevance can be found for the two 
kinds of approaches [13]. Nevertheless, local 
characteristics of NPL is undoubtedly a great advantage 
when addressing incremental learning in variable 
environments, since the local modification resulting 
from any change does not affect the overall structure of 
the non linear transform already learned. 

 
4.2 Learning SMCM maps using General 

Regression Neural Network(GRNN)  
To estimate the normalized gradient of the error, the 
following map f is defined: 

),(ˆ aqfq δδ =  (2) 
Where δa is the 3D directional vector towards the task 
ac specified in the sensory space, q the vector of the 
state variable. q̂δ  is the estimated normalized 
modification within the state space that will minimize 
the error between a (the mapping of q in the sensory 
space) and the task specification ac. Following GRNN 
memory based approach, the calculation of the map f is 
approximated through a variable gaussian kernel 
density estimator as explained below: 
 
Given a set N of learning samples, {(qi, δqi, δai)}i=1…N , 
the state update q̂δ  that minimizes the error signal 
calculated from a current state q and a 3D normalized 
directional vector δa is estimated as the conditionnal 
expectation of δq given ξ : 
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where ξ=[q, δa] , ξi=[qi, δai], C is a normalizing factor, 
and K a variable gaussian kernel: 
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W is a weighting diagonal matrix used to balance the 
wheighting of sensory information,(δa) with motor 
information (q), σ is a parameter that scales the local 
density in the state space and in the sensory space: if the 
density is low, σ is increased and conversely, if the 
density is high, σ is lowered.  
 
4.3 Naive GRNN learning algorithm 
σ is selected empirically, since an optimum value 
cannot be determined from a set of observations. 
  
Initialisation: select a small value ε, an integer value N 
and set i to 0 (ε can be a function of N). 
 
1) Select randomly a state vector q, position the multi-

joint system according to q, and observe the 
corresponding sensory outputs a. 

2) Select a small normalized change δq, position the 
multi-joint system according to (q + δq), and 
observe the change in sensory outputs δa.  

3) Calculate q̂δ  using ξ=[q, δa]T according to 
equations (3) and (4).  

4) If || q̂δ -δq|| > ε, save the association ([q, δa], δq) 
as a new learning sample (ξi , δqi), create a 
corresponding neuron  and increment i. 

5) If i<N, loop in 1), stop otherwise  
 
4.4 Implementation issues 
In estimating the expectation of the state update (δq) 
given ξ, the computations of distances in the d-
dimensional ξ vectors space are required (d = 
dimension of the state space + dimension of the sensory 
space). When summing gaussian kernels (eq. (3) and 
(4)), only the ξi vectors belonging to the neighborhood 
of ξ are retained. To speed up the computation process, 
a kd-tree [14] for identifying neighborhoods in 
logarithmic time with N can be advantageously used. 
(The kd-tree representation of the stored data leads to 
reconsider the architecture of GRNN to implement 
similar neighborhood search). 
 
5 Experiments 
 
5.1 Controlling a geometric arm model 
To exemplify the flexibility and the generic 
characteristics of ASMCM we present a simple 
experiment carried out on a simulated arm system 
submitted to a reaching task.  
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Fig. 2 : Geometric arm model with three joints and seven 
degrees of freedom. The length of the joints are respectively 
.4, .4 and .2, in simulation  units 
 
The arm is composed of three joints with 7 degrees of 
freedom as shown in figure 2. It is controlled by a 
ASMCM where the gradient descent strategy has been 
estimated using the learning of the non linear mapping f 
characterized in the previous section. To evaluate the 
learning capability of the above presented NPL 
technique, ASMCM has been tested as follows:  
 



 

For increasing values of the number of learning samples 
N, five learning runs are carried out. For each of these 
runs, two hundred and fifty 3D spatial target positions 
and initial conditions have been selected randomly. For 
these 250 conditions, the error rate (number of cases 
where the arm is not able to reach the target), the 
average of the time to target (number of iterations of the 
sensory motor loop) and the average of the residual 
distance to target when errors occur are calculated.  
 
The experimental settings for this test are the following: 
 
• A target is considered to be reached when the 

residual distance between the arm end-point and 
the target is below 0.05. 
 

• The size of σ is selected such that at least 40 
neighbors can be provided to evaluate δq.  
 
 

• W is such that wii = 1 if i identifies a state 
variable in q , wii = .005 if i identifies a 3D 
coordinate of the arm end-point, wij = 0 
otherwise. 

 
The results of this test are reported in Figures 3, 4 and 
5. Clearly, for 60000 learning samples, the map f is 
apparently well modeled, since the residual error rate is 
low (about 5%) and very few improvements are gained 
when increasing N. Furthermore, the average time to 
target is more or less asymptotically reached for 
N=80000, while the average residual distance to target 
when an error occurs increases slowly. 
 

Fig. 3: The maximum, minimum, and average error 
values evaluated on the 5 learning runs are presented 
for N varying from 1000 samples to 85000 samples. 
 
The first interesting result is that N can be chosen quite 
low for acceptable performances. It is commonly 
accepted that for estimating a multivariate function with 
10 variables (e.g. 7 degrees of freedom and 3D 
coordinates) using a kernel density estimator requires 

above 800,000 samples adequately selected  [15]. 
N=80,000 seems to be sufficient for the considered 
task. One reasonable explanation is that the sensory 
motor loop performs a time average over successive 
gradient values that compensate small errors due to the 
coarse estimation. A rough gradient mapping estimation 
is consequently for the reaching task that is addressed. 
 

Fig. 4: The time average to target as a function of N. 
The maximum, minimum and average values of the 5  
learning runs are shown. 
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Fig. 5: The average of the residual distance to target is 
presented as a function of N. The maximum, minimum 
and average values of the 5 learning runs are shown. 
 
To evaluate how well the learned map performs, the 5% 
residual error rate should be compared to the 
performance of a sensory motor  loop that incorporates 
a true gradient operator, namely a gradient value that is 
analytically calculated. Surprisingly, the error rate for 
this configuration is about 12.5%. Note that this figure 
is met by ASMCM for N ≅ 9000 learning samples, 
which is quite small. This figure is significantly worse 
than the one exhibited by ASMCM. We cannot propose 
yet a definitive explanation for this result. Nevertheless, 
one can conjecture that the noise induced by the coarse 
gradient map involved in ASMCM allows to escape 
from local minimums of the error function E. If this can 
be proved, one can view ASMCM as an efficient 
alternative method to minimize multivariate non linear 
quadratic functions.  
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Fig. 6: Error function E for ASMCM (ErrL) and for 
SMCM (ErrG). The third target is reached by ASMCM 
while SMCM falls into a local minimum.  
 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209

xG

xL

Time steps

 

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209

yG

yL

Time steps

-1
-0,8
-0,6
-0,4
-0,2

0
0,2
0,4
0,6
0,8

1
1,2

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209

zG

zL

Time steps

Fig. 7 : 3D positions of the arm extremity for ASMCM 
(xL, yL, zL) and SMCM (xG, yG, zG) as functions of time 
for the three targets reaching tasks. 
 
Previous figures (Fig. 6 and Fig. 7) show that the 
learned map with N=85000 samples exhibits quite 
similar 3D cinematic outputs to those produced by a 

sensory motor loop that integrates a true gradient 
operator (SMCM). Three targets and initial conditions 
have been selected. Figure 6 shows the evolution of E 
as a function of time (simulation units) for the ASMCM 
(ErrL) and for the SMCM (ErrG) . The third target 
cannot be reached by the SMCM that falls into a local 
minimum, while the ASMCM manage to find a path to 
this target, escaping  local minimums.  
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Fig. 8: Reaching tasks without a stick (i) and with a 
stick (ii) that double the length of the last joint of the 
articulated chain. 
 
This is shown on the ErrL signal that is not 
monotonically decreasing and can be locally increased 
for ASMCM, while ErrG signal is necessarily 
monotonically decreasing for SMCM.  Figure 7 shows 
that the 3D (x, y, z) position for the two first targets 
evolve quite similarly for ASMCM and SMCM. 
Finally, to exemplify the flexibility of the learned map 
f, we present two last experiments. In the first 
experiment (Fig. 8 (i)) three spatial targets a1[0.5, 0.5, 
0], a2[0, 0.5, 0.5] and a3[0.8, 0, 0.8] are successively 
activated. The two first targets are asymptotically 



 

reached, while the third one, out of hand, cannot be 
reached by the arm. In the second experiment (Fig. 8 
(ii)), the same targets a1, a2, a3 are activated, but the last 
joint length of the arm is doubled to simulate the 
adjunction of a stick. Without any update of the 
learning, all three targets are now reached.  This nice 
property results directly from the nature of the map f, 
that capture directional modification vectors δq rather 
than absolute state vectors q. 
 
6 Conclusion 
A Sensory-motor control model (SMCM), combining 
non linear sensory motor transforms is tackled to solve 
in an iterative fashion the inverse cinematic problem 
according to a gradient descent strategy.  
From this model, the learning of sensory to motor maps 
involved in sensory motor controlled systems has been 
addressed at the light of non parametric learning GRNN 
approaches, based on a variable kernel density estimator 
and the use of a kd-tree architecture to simulate neuron 
activation according to a near neighbor search. Despite 
the apparent high memory requirement needed by this 
kind of estimator, the proposed learning scheme 
efficiently performs when used to control multi-
articulated chains with 7 degrees of freedom. This result 
is obtained even if the number of learning samples is 
significantly below commonly accepted statistical 
figures. Nevertheless, the number of degrees of freedom 
cannot be too high in order to cope with the memory 
needs of the model.  
Since the knowledge of the analytical equations that 
drive the mechanical or geometrical system are not 
required, the above described ASMCM model is 
generic and could be easily adapted to various kinds of 
sensory motor systems. Neuro-physiology arguments 
could be found in the literature that support ASMCM 
like models. Some insights can certainly be gained by 
confronting ASMCM characteristics with some results 
obtained in neuro-sciences. This method might help to 
understand further the sensory motor apparatus and 
could find applications in robotics and animation of 
virtual characters.  
 
Finally, ASMCM seems to show better performances 
than the sensory motor control model which integrates 
the true gradient operator.  The residual learning noise 
in ASMCM allows effectively to escape local 
minimums of the error signal to minimize.  This 
property potentially positions the ASMCM as an 
efficient alternative method to minimize multivariate 
quadratic functions, according to a pseudo steepest 
descent strategy. 
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