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Abstract: - In this paper, we present a parameterized defuzzification method (PDM) obtained as a linear
combination of some of the most well known defuzzification methods. As a case study, we will test the
behaviour of the proposed PDM on a simple fuzzy inference system where a good performance can only
be obtained using a multi-criteria defuzzification process.
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1 Introduction

A fuzzy inference system is a computing framework
based on fuzzy if-then rules and fuzzy reasoning
[5]. It has found successful applications in a wide
variety of fields, such as automatic control, decision
analysis, expert system and robotics. The basic
structure of a fuzzy inference system is built upon
three major components:

e arule base, which contains a selection of fuzzy
rules;

e 3 database, which defines the membership
functions used in the fuzzy rules;

e a reasoning mechanism, which performs the
logical inferences based upon the rules and
some given facts, and it derives a reasonable
output or conclusion.

A fuzzy inference system can take either fuzzy input
[11] or crisp inputs (which are viewed as fuzzy sin-
gletons), and it produces a fuzzy output. Whenever
it is necessary to have a crisp output, especially in
a situation where a fuzzy inference system is used
as a controller, we need a defuzzification method to

extract a crisp value that best represents the fuzzy
output. The choice of the defuzzification strategy,
therefore, can directly affect the success of the over-
all fuzzy inference system.

In the next section, we will describe five com-
mon defuzzification methods and define a new
one, called PDM (Parameterized Defuzzification
Method), obtained as a linear combination of the
previous methods.

2 Defuzzification

Let A be a fuzzy set defined over the universe U.
Let p be A’s fuzzy membership function. The fol-
lowing defuzzification methods are very well known
in literature
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where o = min{z|z € Z} and f = max{z|z €
Z}. That is, the vertical line z = BOA parti-
tions the regions between z =, z =8,y =0,
y = u(z) into two regions with the same area.

e Mean of maximum is the average of the maxi-
mizing z at which p reacheas a maximum value
y*. Formally,

fy zdz
[y dz
where V' = {z|u(z) = y*}.

In particular, if p has a single maximum at
z =2z" then MOM = z*.

MOM =

(1)

e Smallest of maximum (SOM) if the minimum
of the maximizing z.

e Largest of maximum (LOM) is the maximum
of the maximizing z.

Among the existing strategies neither the COA nor
the others methods emerge as the best defuzzifica-
tion strategy. We will try to come up now with
a strategy that combines the five methods above
defined.

The parameterized defuzzification method
(PDM) is a simple convex linear combination of
the previous above and it is defined as:

PDM = a1COA+ asBOA+ asMOM +

+G4SOM + (I5LOM

where Zi’:l a; = 1. As for any other linear aggre-
gation operator, the main problem is to decide the
values that the parameters a; must have (given a
specific problem at hand).

Alternative approaches can be found in [6, 10].

3 Genetic algorithms

Choosing the best values for the parameters is very
much like an optimization problem. We think,
therefore, that it might be worthwhile exploring an
evolutionary approach [3, 4, 8]. In the following we
will define the basic elements of the genetic algo-
rithm we used.

3.1 What is a chromosome

A chromosome is an ordered list of 5 elements. The
first element represent the weight for the COA, the

second element the weight for the BOA and so on.
How many bits to use for this representation, i.e.
what level of precision we want depends upon the
fitness function we will be using.

3.2 Fitness

The fitness value of a chromosome depends upon
the particularly fuzzy system we are using. In gen-
eral, a chromosome represent a specific defuzzifi-
cation method, so its fitness value is proportional
to the performance of the fuzzy system when that
specific defuzzification strategy is used.

4 Case study: SPEED

As a simple example, let us describe SPEED. In this
example, the fuzzy system controls a vehicle run-
ning over a circular speedway where there are sev-
eral types of obstacles that the vehicle must avoid if
it does not want to crash. Three different difficulty
levels are defined:

e Beginner level. The speedway is without ob-
stacles and the vehicle control system must
only be careful enough to stay within the
speedway borders.

e Intermediate level. In this case we have a
certain number of fixed obstacles that the ve-
hicle control system must obviously avoid.

e Expert level. In this level we have a cer-
tain number of obstacle that appear instanta-
neously in front of the vehicle. This way we
want to simulate the concept of unforeseeable
events typical of the real life.

To measure the performance of our fuzzy system we
make a simple test. Our vehicle must go through
the speedway for a fixed number of times and dur-
ing the test we also consider the concept of stability
that now we define.

At every instant, the vehicle control system must
decide whether to go straight, turn left or turn right
so we define stability as a numeric value that we
increase every time the vehicle goes straight and
decrease every time it turns left or right. We ob-
serve that the introduced concept of stability is in
contrast with the concept of safe driving, because a
driver that turns at the last moment has a good sta-
bility but it is more likely that it will have a crash.
On the other hand, a careful driver will never have



a crash but the defined stability value will not be
as good.

We will describe now some of the implementation
decisions we made for our case study.

4.1 Implementation details

To simplify the implementation and concentrate
on testing the evolutionary approach, we used
(semi)triangular membership functions. So, for in-
stance, the fuzzy set OBSTACLE_FAR is defined
as:

z — min

OBSTACLE_FAR(z) = (2)
where min < z < max and min and max represent
respectively the minimum and maximum values for
an obstacle distance. We are also assuming that
the speedway road is (ideally) divided into three
lanes: internal, middle and external lane. Here we
have the five IF_THEN rules of our fuzzy system:

e IF (INTERNAL_LANE)
THEN TURN_RIGHT

e IF (EXTERNAL_LANE)
THEN TURN_LEFT

e IF (CENTRAL.LLANE AND
CLE_FAR)
THEN GO_STRAIGHT

e IF (OBSTACLE_TO_THE_RIGHT AND OB-
STACLE_NEAR)
THEN TURN_LEFT

e IF (OBSTACLE.TO_.THE.LEFT AND OB-
STACLE_NEAR)
THEN TURN_RIGHT

max — min

OBSTA-

We use Mamdani fuzzy inference system to infer
the output fuzzy set ([7, 12]).

4.2 Some genetic algorithm imple-
mentation details

In our evolutionary approach, we used the following
genetic parameters:

Number of generation : 25
Population size : 40
Crossover dynamic
Mutation : 0.02
Elitism : 2

Length of a chromosome 40(5 * 8)

COA | BOA | MOM | SOM | LOM
Beg. | 2383 | -976 -976 -976 | -976
Int. 1053* | -794 536 -845 | -853
Exp. | 1065* | 405* | 676* | -610 | -737
Table 1: Performace of the five defuzzification
methods

COA | BOA | MOM | SOM | LOM
Beg. | 0.62 | 0.07 0.07 0.04 | 0.20
Int. 0.46 | 0.12 0.30 0.01 0.11
Exp. | 0.32 | 0.08 0.07 0.07 | 0.46

Table 2: Weights obtained from evolution

The length of the chromosome is obtained by dis-
cretizing with 8 bits the weights. The concept of
dynamic crossover was introduced in [2], and it ba-
sically means that high fitness chromosomes will
use crossover with few points, and low fitness chro-
mosomes will use crossover with many points.

5 Results

In table 1 we show the performance of the five
methods of defuzzification. The * denotes a crash.
We can observe that the COA is the best in the
beginner level but it is unusable in the other levels.
In the intermediate level the best defuzzification is
MOM but we cannot use it in the expert level. In
the last level SOM and LOM are the defuzzification
methods that pass the test but their performances
are not good.

Table 2 shows the weights obtained from evolu-
tion. We can observe that defuzzification methods
that have a good performance give a large contri-
bution in the linear combination for PDM. It is in-
teresting to note that the weight for COA decreases
as the difficulty level increases.

The performance of our fuzzy system when we
use PDM as defuzzification strategy is the following

PDM
Beginner 2231
Intermediate | 1650
Expert 1344

For the beginner level we do not have a better re-
sult than COA but for the intermediate and expert
levels the result are very good.
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Conclusion and future

works

In this paper we applied the idea of evolutionary
defuzzification in the framework of a simple fuzzy
inference system. We plan to extend the simple
model introduced here in many directions, let us
mention a few.

We intend to change the nature of the member-
ship functions using for example trapezoidal
or gaussian and the inference system using for
example the Sugeno inference system (see for
instance [9]).

We plan to extend the model by introducing a
pre-processing step to learn good membership
functions (see for instance [1]).

We also plan to consider time and energy with
stability to define the performance of the sys-
tem and extend the simulation to a three-
dimensional space.

Finally, we would like to study the perfor-
mance of PDM when it is defined as a non-
linear combination.
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