An evolutionary algorithm for the Minimum Hitting
Set Problem

V. CUTELLO, E. MASTRIANI, F. PAPPALARDO
Department of Mathematics and Computer Science
University of Catania
V.le A. Doria 6, 95125 Catania
ITALY
{cutello, mastriani, francesco}@dmi.unict.it

Abstract: - In this paper we propose an evolutionary algorithm to approximate optimal solutions to
instances of the Minimum Hitting Set Problem, a well known N P-complete problem (see [3]). Our
genetic algorithm (see [2]) will use the idea of viruses which infect chromosomes and change one of their
bits. A special dynamic fitness function has been also used to improve overall performances.

Key-Words: Minimum Hitting Set, Minimum Set Cover, Genetic Algoritms, Approximation Algorithms,

NP-complete Problems.

1 Introduction

The Minimum Hitting Set is one of the better
known combinatorial problems which belong to the
class of N P-complete problems. Therefore, the
problem is very unlikely to have a polynomial solu-
tion and, in turn, it is worthwhile to explore heuris-
tics that might give near-optimal solutions. We
propose here a genetic algorithm for the problem,
which contains two novel ideas:

e viruses (see [10]) and anti-viruses which co-
evolve with the system, and, to some extent,
play the role of mutation; and

e dynamic fitness evaluation, i.e. the way
we evaluate the fitness of all the individuals
change as soon as a specific event has hap-
pened. In our case, that event is the presence
in the population of a hitting set.

In the following, we will give a detailed description
of our algorithm and, subsequentely, we will show
its performance on a series of test cases of differ-
ent dimensions. We will now give for completeness
the definition of the Minimum Hitting Set Problem
(MHSP).

1.1 The Minimum Hitting Set Prob-

lem

The formal definition of the MHSP is the following

e Instance: a collection C of subsets of a finite
set S.

e Solution: a hitting set for C, i.e. a subsets
S' C S such that S’ intersects each and every
element of C.

e Objective Function: the cardinality |S’| of
SI

e Optimal Solution: a hitting set S’ that min-
imizes |S’|.such that S’

It is worthwhile to mention another N P-complete
problem, Minimum Set Cover Problem (see [4, 7]),
which is completely equivalent to the above de-
scribed MHSP. Such a problem, which has been
more widely studied, presents good approximation
results (see [6, 8]), within 1+ log|S| (see [9, 5]) of
the optimal solution. Such results carry over the
MHSP.



2 Formalizing our Genetic Al-
gorithm

Given a finite set S of cardinality n, we can think of
it as the set {0,2,...,n —1}. Therefore, any subset
T C S can be seen as a binary array of length n
such that T[] = 1 if and only if i € T In turn, C is
a finite collection of binary arrays all of length n.
A hitting set is also a subset of S and therefore
can also be represented as a binary array of length
n.
Thus, it is very natural to formalize the MHSP
in the classical terms of a genetic algorithm search.

2.1 Fitness

We need to come up with a good definition of fitness
for a tentative solution. We have two parameters
to take into considerations: first the tentative solu-
tion must intersect all the members of C; second, it
must be of minimal cardinality. Any evolutionary
approach which just takes into consideration the
first paramenter, will tend to produce populations
of individuals very rich of ones. Thus, not mini-
mal. If instead, we take into consideration just the
second parameter, we will have populations of indi-
viduals full of zeroes, and thus not hitting set. Any
fitness function therefore must be a two-variable
function of type f(p,a) where p is the number of
sets hit by T', and « is the number of zeroes of T'.
Also, f must be increasing on both parameters, i.e.

f(p, o) iff a > o
fo'sa) iff p > p'

flp,a) >
flp,a) >

Among the infinite possible choices, we selected the
following two functions:

flp,a) =
flp,a) =

(1)
(2)

with n = |S|. The reasons for our choices are the
following;:

pXn+ o
p+a

e although definition (1) takes into account the
number of zeroes of a particular individual,
it gives a lot more weight to the number of
sets of C that the individual intersects. In-
deed, as it is easy to see, given two individ-
uals ¢; and ¢y if ¢; hits more sets than cs
it will have a higher fitness value no matter
what the number of zeroes in the two individ-
uals are. With this choice of fitness function,

evolution quickly produces populations of in-
dividuals with high values of p.

e Once p has reached the maximal possible value
m = |C|, evolution should favour individuals
with high «a values and p = m value. To this
end, definition (2) seems to be a very good
choice.

Therefore our GA will have a 2-phase fitness func-
tion. In the first phase, when no solution has been
found yet, the fitness function (1) is used. As soon
as a solution is found, the fitness function (2) is
used for the whole population.

2.2 Genetic richness

To guarantee genetic variety in the population, we
chose not to use a mutation operator. Instead, we
decided to associate to each individual, an extra bi-
nary string of 2 + logn bits. We called these bits a
virus. Viruses act differently in the two phases (so-
lution not found, solution found) above mentioned.
In the first phase, they tend to weaken individu-
als by increasing the number of 1 («a decreases) but
at the same time they are helping them in becom-
ing solutions). In the second phase, they tend to
weaken individuals by increasing the number of 0
(p may decrease) but at the same time « increases.
The reason for the 2 + logn bits is the following:

e any string of logn bits uniquely identify a
number between 0 and n — 1 and therefore,
uniquely identifies a position within the indi-
vidual string (a locus). If the virus hits the
individual, that bit will be put to 1 (in the
first phase) or to 0 in the second phase.

e The virus hits the individual if the remaining
two bits, called control bits, are both 1. As
is the case for many diseases in nature, indi-
viduals can be divided into 3 groups: healthy
(control bits are both 0); disease-carrier (one
and only one of the control bits is 1); sick (con-
trol bits are both 1). Any individual, even an
healthy one, carries with itself a virus, inher-
ited along with its genetic patrimony, from its
parents. Two diseas-carrier individuals which
are chosen for crossover, will produce a sick
child with 1/4 probability.

2.3 Crossover and other parameters

We used the uniform crossover method. As a selec-
tion method we used the tournament selection (see



[1]). A selected individual will mate with proba-
bility 1. No mutation is introduced and we used
a mild form of elitism: the best fitness individual,
and the best candidate solution (the two migth be
different) are carried onto the next generation. A
population is formed by 200 individuals.

3 Experimental results

We decided to test our algorithm on a variety of
test cases. We generated randomly four different
sets of test cases: denoted by f,g,h,j, which will
be described below. For each test set we ran our
genetic algorithm on nine different test cases, gen-
erated with cardinalities 100, 150 and 200 for S, and
different, values for the cardinality of C. Each test
set is characterized by how the sets in C are gener-
ated randomly. To randomly generate a subset of
S we acted as follows:

e We fixed two integer interval parameters
[al, . ,CLQ] and [bl, . ,bQ].

e To assign a random value to an individual
bit, we draw randomly two numbers a' €
[al,...,a2] and ' € [bl,...,bg]. If o < b’ the
bit is given the value 1 otherwise is given the
value 0.

The test sets are characterized by different choices
for the integer interval parameters. We chose the
integer interval parameters so the expected cardi-
nalities of the minimum hitting sets are high for
the test set g, medium for the test set f and low
for the test set h. Below we will define the different
test sets and then, we will show the results of our
experiment using tables with 7 columns:

Column A gives the test case name;
Column B gives the cardinality of S;
Column C gives the cardinality of C
Column D gives the total number of virus hits

Column E gives the generation number where the
best solution is found

Column F gives the cardinality of the best hitting
set found

Column G since a genetic algorithm is ran three
times on each test case, gives how many times
the best solution is found

A| B C D E | F| G
fo | 100 | 20000 | 6457 | 125 | 33 | 1/3
fi | 100 | 30000 | 8095 | 102 | 38 | 1/3
f2 | 100 | 50000 | 6845 | 127 | 42 | 1/3
f3 | 150 | 80000 | 12597 | 200 | 46 | 1/3
fa | 150 | 90000 | 9392 | 142 | 48 | 1/3
f5 | 150 | 100000 | 6752 | 142 | 50 | 2/3
fe | 200 | 150000 | 15855 | 188 | 51 | 1/3
f7 | 200 | 180000 | 10989 | 184 | 55 | 1/3
fs | 200 | 200000 | 11909 | 161 | 55 | 1/3
Table 1: Results for the test set f
A| B C D E | F| G
go | 100 | 20000 | 6115 | 108 | 37 | 2/3
g1 | 100 | 30000 | 7845 | 122 | 39 | 2/3
g2 | 100 | 50000 | 8143 | 153 | 43 | 1/3
g3 | 150 | 80000 | 10762 | 159 | 49 | 1/3
g4 | 150 | 90000 | 12392 | 148 | 50 | 3/3
gs | 150 | 100000 | 10185 | 158 | 51 | 1/3
gs | 200 | 150000 | 15918 | 187 | 54 | 1/3
g7 | 200 | 180000 | 17442 | 186 | 57 | 1/3
gs | 200 | 200000 | 10021 | 177 | 57 | 2/3

Table 2: Results for the test set g

3.1 Test set f

The test set f is characterized by the intervals
[0,...,9] and [1,...,10]. What is the probability
that ¢’ < b’ ? The event space is made of the 100
possible pairs of values [a’,b']. Of these 100 pairs,
the ones for which a’ < b’ are exactly 55. Therefore
with probability 23 a bit is set to 1. Any set in C
will therefore have a little ofver one half of its bits
equal to 1. Table 1 shows the results obtained for

the test set f.

3.2 Test set g

The test set g is characterized by the intervals
[2,...,9] and [1,...,10]. What is the probability
that @' < b ? Of the 80 pairs of values in the
event space, the ones for which a’ < b' are exactly
36. Therefore with probability % a bit is set to 1.
Any set in C will therefore have a little less than a
half of its bits equal to 1. Table 2 shows the results
obtained for the test set g.



A B C D E F| G
ho | 100 | 20000 | 64583 | 83 | 14 | 1/3
hy | 100 | 30000 7918 | 118 | 15 | 1/3
hs | 100 | 50000 | 4297 | 78 | 17| 3/3
hs | 150 | 80000 | 9430 | 112 | 18 | 1/3
hy | 150 | 90000 | 3651 83 | 19| 3/3
hs | 150 | 100000 | 6483 | 111 | 19 | 2/3
he | 200 | 150000 | 9083 | 84 |20 | 1/3
h7 | 200 | 180000 | 8593 | 102 | 21 | 2/3
hg | 200 | 200000 | 2435 50 | 21 | 3/3
Table 3: Results for the test set h
A| B C D E F| G
jo | 100 | 20000 | 7549 | 107 | 32 | 1/3
J1 | 100 | 30000 | 6497 | 101 | 36 | 2/3
J2 | 100 | 50000 | 6341 | 109 | 39 | 2/3
Js | 150 | 80000 | 16982 | 180 | 43 | 1/3
ja | 150 | 90000 | 10301 | 150 | 46 | 1/3
Js | 150 | 100000 | 9337 | 176 | 46 | 1/3
Je | 200 | 150000 | 1223 | 179 | 50 | 1/3
J7 | 200 | 180000 | 15298 | 175 | 50 | 1/3
Js | 200 | 200000 | 14754 | 182 | 53 | 1/3

Table 4: Results for the test set j

3.3 Test set h

The test set h is characterized by the intervals
[0,...,7] and [1,...,10]. What is the probability
that a’ < b’ ? Of the 80 pairs of values in the event
space, the ones for which a' < b’ are exactly 52.
Therefore with probability 32 a bit is set to 1. Any
set in C will therefore have about two thirds of its
bits equal to 1. Table 3 shows the results obtained
for the test set h.

3.4 Test set j

Finally, The test set j is generated as f for one
third, g for another third, and A for the last third.
Table 4 shows the results obtained for the test set

VE

4 Summary and Conclusions

We have proposed an evolutionary algorithm to
approximate optimal solutions to instances of the
Minimum Hitting Set Problem, a well known A/P-
complete problem. In our approach, we have used
the idea of a virus which co-evolves with the in-
dividual to which is attached, and a dynamic fit-

ness function to improve performances. In a first
phase when viruses infect chromosomes they tend
to weaken individuals by increasing the number of
1, but in doing so they make them stronger in terms
of being candidate solutions. When a candidate so-
lution has been found, viruses tend to increase the
number of 0. In doing so, candidate solutions may
no longer be such, but also it migth be the case that
candidate solutions remain so with a lower num-
ber of 1. The choice of dynamic two-phase fitness
function provided better overall performances. The
obtained positive results in a long series of experi-
ments, prove that such ideas are worthwhile explor-
ing in greater depth for such kind of problems.

References

[1] Golberg, D. E., and Deb, A comparative anal-
ysis of selection schemes used in genetic algo-
rithms, In G. Rawlins, ed., Foundations of Ge-
netic Algorithms, Morgan Kaufmann, 1991.

[2] M. Mitchell, An Introduction to Genetic Algo-
rithm, A Bradford Book, The MIT Press, 1996.

[3] Garey M. R., and Johnson, D. S., Computers
and Intractability: A guide to the theory of NP-
completeness, W. H. Freeman and Company,
San Francisco, 1979.

[4] Ausiello, G., D’Atri, A., and Protasi, M.
“Structure preserving reduction among con-
vex optimization problems,” J. Comput. System
Sci., Vol. 21, pp. 136-153, 1980.

[5] Zuckerman, D., “NP-complete problems have
a version that’s hard to approximate,” Proc.
Eight Ann. Structure in Complezity Theory
Conf. IEEE Computer Society, pp. 305-312,
1993.

[6] Hassin, R., and Megiddo, N., “Approxima-
tion algorithms for hitting objects with straight
lines,” Disc. Appl. Math., Vol. 30, pp. 29-42,
1991.

[7] Srimivasan, A., Improved approximations of
packing and covering problems, Proc. 27th Ann.
ACM Symp. on Theory of Comp., pp. 268-276,
1995.

[8] Feige U., A threshold of logn for approximating
set cover, J. ACM, Vol. 45, pp. 634-652, 1998.



[9] Johnson, D. S., Approximation algorithms for
combinatorial problems, J. Comput. System
Sci. 9, pp. 256-278, 1974.

[10] Susumy Saito and Tooshi Sako, A Ge-
netic Algorithm By Use Of Virus Evolu-
tionary Theory For Combinatorial Problems,
http://www.ise.nus.edu.sg/proceedings/
apors2000/fullpapers/02-04.htm, Science Uni-
versity of Tokyo School of Management Kuki-
shi 346-8512, Japan.



