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Abstract: – A hierarchical fuzzy model is proposed in this paper. The concept of relevance has enabled the meas-
urement of the relative importance of rule sets and the Separation of Linguistic Information Methodology (SLIM) 
provided a means to organize its information in different structures. Based on this methodology a new SLIM-PCS 
algorithm is proposed for the Parallel Collaborative Structure (PCS). As demonstrated in the experimental tests, the 
proposed SLIM algorithm has been successfully applied to modelling the temperature of agricultural greenhouses. 
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1. Introduction 
Fuzzy modelling is a very important and active re-
search field in fuzzy logic systems. Compared to tradi-
tional mathematical modelling and pure neural network 
modelling, fuzzy modelling possesses some distinctive 
advantages, such as the mechanism of reasoning in 
human understandable terms, the capacity of taking 
linguistic information from human experts and combin-
ing it with numerical data, and the ability of approxi-
mating complicated non-linear functions with simpler 
models. In recent years, a variety of different fuzzy 
modelling approaches have been developed and applied 
in engineering practice [1][2][3]. These approaches 
provided powerful tools to solve complex non-linear 
system modelling and control problems. However, 
most existing fuzzy modelling approaches concentrate 
on model accuracy that simply fit the data with the 
highest possible accuracy, paying little attention to sim-
plicity and interpretability of the obtained models, 
which is considered a primary merit of fuzzy rule-based 
systems. Often, users require the model to not only 
predict the system's output accurately but also to pro-
vide useful description of the system that generated the 
data. Such a description can be elicited and possibly 
combined with the knowledge of experts, helping to 
understand the system and validate the model acquired 
from data. Thus, it is desired to establish a fuzzy model 
with satisfactory accuracy and good interpretation ca-
pability.  

In order to organize the fuzzy rules and reduce its 
number, it is of utmost importance to define metrics to 
quantify each one of the fuzzy rules that describes the 
process. 

This work addresses this fundamental aim of fuzzy 
modelling. As result of a new concept recently pro-
posed [4], namely the relevance of the rule set, this ob-
jective is near at hand. This new concept, bounded by a 
set of intuitive axioms, opens the doors for new types 
of fuzzy modelling, based on called Separation of Lin-
guistic Information Methodology, or SLIM [4][5]. It is 
useful for organizing the information in a fuzzy system: 
a system f(x) is organized as a set of n fuzzy systems 
f1(x), f2(x), ..., fn(x), in a particular structure. Each of 
these systems may contain information related with 
particular aspects of the system f(x). Taking this into 
account the SLIM-PCS algorithm is proposed for tun-
ing the Parallel Collaborative Structure (PCS) and 
evaluated against a real world case study. 

The practical goal of this work is to model an agri-
culture greenhouse under process control [6]. The proc-
ess model is highly non-linear and is not completely 
known. To accomplish the fuzzy identification task, the 
RLS-Nearest Neighbourhood Fuzzy adapter method is 
employed, which combines the Nearest Neighbourhood 
Fuzzy Method with RLS algorithm [3][7][8]. As ex-
pected, the identification procedure for such kind of 
process model leads to a set with a very high number of 
rules. Afterwards, the information is organized by the 
SLIM algorithm in order to improve its readability and 
reduce the number of rules with no loss of valuable in-
formation. As demonstrated, the experimental results 
obtained with this strategy perform at least as well as 
the mechanistic models. A different SLIM-PCS algo-
rithm was successful tested in the modelling of pilot 
plant chemical reactor [9]. 

The paper is organized as follows. The concept of the 
relevance and the Parallel Collaborative Structure are 



briefly presented in sections 2. The RLS-Neighbour-
hood Fuzzy Method, used in fuzzy identification pro-
cedure, is described in section 3. The SLIM methodol-
ogy is presented and its SLIM-PCS algorithm is pro-
posed in section 4. In section 5 the greenhouse climate 
model where the experimental tests took place is de-
scribed, and the experimental results are presented. Fi-
nally, in section 6, the main conclusions are outlined. 

 
 

2. Relevance and the Parallel Collabo-
rative Structure 

The SLIM methodology organizes a fuzzy system f(x) 
as a set of n fuzzy systems f1(x), f2(x), …, fn(x). Each of 
these subsystems may contain information related with 
particular aspects of the system f(x). The subsystems 
may be organized under different structures. In this 
case, a PCS has been used. Therefore, the output of the 
SLIM model is the integral of the individual contribu-
tions of each fuzzy subsystem: 
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where ( )iℜ x  represents the relevance function of the 

ith fuzzy subsystem covering the point x of the Universe 
of Discourse, and the ∫ an aggregation operator.  

The relevance of aggregated system is given by: 

( ) ( ) ( )i i nℜ = ℜ ∪ ∪ ℜLx x x  (2) 

Naturally, if the ith fuzzy subsystem covers appropri-
ately the region of the point x, its relevance value is 
high (very close to one), otherwise the relevance value 
is low (near zero or zero). 

Fig.1 shows an example of the application of the 
SLIM methodology to fuzzy modelling using two fuzzy 
subsystems. The fuzzy system f2(x) may describe the 
general aspects of the original system f(x) (usually with 
a small number of rules), while the fuzzy system f1(x) 
describes all the remaining aspects, in order to improve 
the accuracy of the model. As the process evolves, part 
of the information of f1(x) is transferred to f2(x). The 
identification of f(x) and the internal transference of 
information from f1(x) to f2(x) are two independent 
processes that can operate in parallel and may be used 
on-line. 

The separation of information may be used to organ-
ize the information of a system, namely to reduce the 
number of rules representing the original system by 
discarding sets of rules with lower relevance values. 
For these purposes, the relevance function ( )iℜ x is ex-

pected to measure the relative importance of the fuzzy 
rules in the specified context. 
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Fig. 1. A practical implementation of PCS. 
 
Definition 1: Consider ℑ a set of rules from the input 

space U, into the output space V, covering the region in 
the product space S = U x V. Any function defined as a 
measure of relevance must be of the form 

( ) [ ]: 0 ,  1S Pℜ ℑ →%  (3) 

where ( )P ℑ%  is the power set of ℑ. The function ℜS 

must obey a set of five axioms [4][5]. 
 
Next, the definition of relevance for two particular 

situations is reviewed. A measure of relevance for a 
rule in a single point of the product space is given in 
definition 2, and definition 3 identifies a measure of 
relevance for a rule in a region of the space. 

 
Definition 2: The relevance of a rule l∈ℑ in a point 

of the product space (x, y) ∈ S is defined as 

( )( ) ( ), ,S l
y

l x y max G Gℜ =  (4) 

i.e., the relevance in (x, y) is the maximum of the ratio 
between the value of the output membership function 
of rule l in (x, y), and the value of the membership of 
the union of all the functions in (x, y). 

 
Definition 3: The relevance of a rule l∈ℑ in S is de-

fined as: 

( ) ( )( )
,

max , ,S S
x y

l l x yℜ = ℜ  (5) 

i.e., the maximum of the value for all points (x,y) ∈ S, 
of the ratio between the membership output function of 
rule l, and the value of the union of all the output mem-
bership functions. 

 
 

3. RLS-Neighbourhood Fuzzy Method 
Consider a collection of N data points {P1, P2,..., PN} in 
a n+1 dimensional space that combines both input and 
output dimensions. A generic fuzzy model is presented 
as a collection of fuzzy rules in the following form: 

Ri: IF x1 is Ail and x2 is Ail ... and xi is Ain THEN y=zi ( x
r

) 



where ( )1 2, , ,
T

nx x x x U= ∈
r L  and y ∈ V are linguistic 

variables, Aij are fuzzy sets of the universes of dis-
course Ui ∈ R, and zi( x

r
) is a function of the input vari-

ables. Typically, z can take one of the following three 
forms: singleton, fuzzy set or linear function. Fuzzy 
logic systems with center of average defuzzification, 
product-inference rule and singleton fuzzification are of 
the following form: 
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where ( ) ( ) ( )
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 is the fuzzy basis func-

tions (FBF), M represent the number of rules, θ l is the 
point at which the output fuzzy set l achieves its maxi-
mum value, and µl is the membership of antecedent of 
rule l. 

A fuzzy adaptive system is constructed from a set of 
changeable fuzzy IF-THEN rules. These fuzzy rules 
come either from human experts or by matching input-
output pairs through an adaptation procedure. The 
adaptive algorithms update the parameters of member-
ship functions, which characterize the fuzzy concepts in 
the IF-THEN rules by minimizing some criterion func-
tions. 

The present algorithm combines the Nearest 
Neighbourhood Fuzzy Method with RLS algorithm. 
The former is used to find the appropriate fuzzy basis 
functions and its placement, namely of the inputs 
memberships, while the RLS algorithm adjusts the lin-
ear function parameters [7][10]. 

For our RLS fuzzy adaptive system we have the fol-
lowing problem: for each time point k=0, 1, 2,…, de-
termine an adaptive fuzzy model of equation (6) such 
that 
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is minimized, where ( ]0,1λ ∈ is a forgetting factor. 

The preceding problem is quite general. If we con-
strain the fk’s to be linear functions of θ ’s parameters, 
the problem becomes an RLS adaptive design problem: 

( ) ( )T
k kf x x= ⋅

r r
p θθ  (8) 

where p and θθ are the vectors of FBF’s and θ ’s pa-
rameters, respectively. 

Choosing the appropriate FBF requires the placement 
of the inputs memberships. For that reason, we pro-
posed the use of the Nearest Neighbour methodology 
[3][8]. This identification method consists in establish-
ing a single radius of influence r. Starting with the first 
sample point (x,y), a cluster with center lx  is created 

in x. A sample point for which the distance to the near-
est clusters is greater than r becomes the center of a 
new cluster: 
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The radius r determines the complexity of the adaptive 
fuzzy model. For smaller radius there are more clusters 
resulting in a more complex non-linear regression that 
demands more computational effort. 

The vector θθ can be updated using the RLS algorithm 
shown bellow [7][10]: 
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where k=1, 2, … is the iteration number. 
The initial values for the iterative process can be 

chosen as θθ0
 = 0 and S0= γ.I, where γ is a large number. 

 
 

4. The SLIM-PCS algorithm  
As depicted in Fig.1, the present algorithm is proposed 
for two subsystems. The generalization for more than 
two subsystems is obvious. The relevance function of 
the fuzzy rules used here is as stated in Definitions 2 
and 3. Other relevance functions can be used as well. 

Let f1 be a fuzzy subsystem obtained by using the 
RLS-Neighbourhood algorithm, and f2 a fuzzy subsys-
tem with early null output values for all domain (or 
relevance null). M1 and M2, are the number of rules of 
the f1 and f2, respectively. 

The first subsystems can be expressed by: 

( ) ( ),1
Tf x xℜ ℜ= ⋅

r r
q Y  (12) 

where 

( ) ( ) lx xℜ = ⊗ ℜ
r r

q q   (13) 

i.e., ( ) ( ) ( ) ( )1 1 2 2 1 1, , , M M
Tl ll l l lx q x q x q xα α αℜ

 = ⋅ ⋅ ⋅ 
r r r rLq  

is the inner product between the FBF vector and the 

relevance vector. 1 2, , , M
Tl l ly y y =  LY  is the vector (or 

matrix) of all the centers of output membership func-
tions. 

The parameter 1lα  is closely connected to the rele-
vance of the rule in the fuzzy system. When 1lα is equal 
to unity, rule l1 has maximum relevance, while for null 



1lα , the rule loses its relevance. If 1 1lα =  for all 
l1=1,...,M1, then f*

1=f1 . If parameter 1lα , associated to 
rule l1, converges to null, rule l1 is eliminated from 
function fℜ,1. If this is possible for all rules of f1 then f1 
is eliminated ( 1lim 0f

α →∞
= ). 

Similarly, the second fuzzy system is expressed by 
( ) ( ),2

Tf x xℜ ℜ= ⋅
r r

p θθ     (14) 

where ℜθθ is the inner product between the θθ  vector and 
the relevance vector. 

Initially, f1 contains all the information, ( )1 1l lℜ = , 

{ }1 11,2, ,l M∀ ∈ L  while f2 is empty, i.e., 

( ) ( )2

2 0 0 ,l
l l θℜℜ = =  { }2 21,2, ,l M∀ ∈ L ,  fℜ,2(xk) = 0. 

The relevance of the rules of f1 decreases at the same 
proportion that f2 assumes a greater importance. Thus, 
during this transfer of process information there is no 
change in the sum of the models. By the end of this 
process, all or part of the rules of model f1 may have 
null or almost null relevance and under these circum-
stances they should be eliminated. Those who keep a 
significant relevance index should not be eliminated, as 
they still contain relevant information.  

Considering what was stated, the problem consists on 
the optimisation of the cost function J: 

( ) ( )min min  
T

J α α α= ⋅
r r r

 

 subject to ( ) ( ) ( ),1 ,2
i if x f x f xℜ ℜ= +

r r r
  (15) 

The purpose is then to keep the invariability of the 
identification model (i = 1, 2, …, iteration) and, simul-
taneously, to reduce the importance of model f1 in fa-
vour of f2. In order to achieve this, the Lagrange multi-
pliers technique has been used. 

Obviously, if the radius of the rules of f1 is so small 
that the center of the rule is a point representative of the 
region covered by the rule, then the resolution of the 
problem has been constrained to the set of M1 points. 
Under these circumstances, the solution of the problem 
is obtained by solving the following system of non-
linear equations: 
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is a symmetric matrix with M1×M1 dimension. 

If the inputs membership functions are static then 
equations (16)-(17) provide a systematic way of trans-
ferring the information from system f1 to system f2 in 
one step. Otherwise, the tuning of memberships pa-
rameters will improve the minimization of J cost func-
tion. An iterative procedure can be used: 

1i i
p p

J
a a
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η+ ∂

= − ⋅
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where ap, with 1, ,  p np= L , are parameters of input 
memberships function, with np the total number of pa-
rameters liable to optimisation procedure, and i the cur-
rent number of the iteration optimisation step. In this 
work we used gaussian memberships. 

The SLIM-PCS algorithm results in the association 
of tuning of the input memberships functions, eq. (19), 
with the tuning of the center of fuzzy outputs sets, eqs. 
(16)-(17). 

Finally, if the αk value for rule k is a null value or 
near zero, then the rule can be discharged. 

 
 

5. The greenhouse model 
The greenhouse climate model describes the dynamic 
behaviour of the state variables by the use of differen-
tial equations of temperature, humidity and CO2 con-
centrations. In this paper the temperature model is con-
sidered. 

The model equations can be written by deriving the 
appropriate energy balance 

 ( ), , , ,

1
-est

T h T out T soil T rad
Temp

dT
Q Q Q Q

dt C
= + +  (20) 

where CTemp [J m-2 ºC-1] is the heat capacity per square 
meter.  

The energy balance in the greenhouse air is affected 
by the energy supplied by the heating system, QT,h [W 
m-2], by energy losses to outside air due to transmission 
through the greenhouse cover and forced ventilation 
exchange, QT,out [W m-2], by the energy exchange with 
the soil, QT,soil [W m-2], and by the heat supplied by sun 
radiation, QT,rad [W m-2]. The energy transport phenom-
ena at greenhouse cover and the contribution of ventila-
tion, induced by temperature differences between the 
inside and outside air is only significant at very low 
wind speeds [11], and consequently they are neglected 
in this model. 

This model requires a great domain of the physical 
process and measurement accuracy on the process vari-
ables. Fuzzy modelling can be an alternative represen-
tation for describing the process and is easily interpret-
able by anyone. 

The model can be significantly improved if it is di-
vided in sub models. The temperature model is broke in 



two parts: the daylight and night sub models. 
• Daylight Temperature (DT) sub model (RAD>0) 

( ), ,, , ,est
Temp T h T out

dT
f T Rad Q Q

dt
= ∆    (21) 

• Night temperature (NT) sub model 

( ), ,, ,est
Temp T soil T h

dT
f T Q Q

dt
= ∆    (22) 

where: 
- ( ) ( ) ( )tTtTtT extest −=∆  is the difference between 

inside and outside temperatures. 
- Rad is the sunlight radiation intensity. 

- ( ) ( ) ( )( ), ,T h T h p estQ t U t T T t= ⋅ −  is the heat flux from 

the heating system. Tp is the temperature of the coil wa-
ter of the heating (about 60 ºC). 

- ( ) ( ) ( ) ( )( ), ,T out T out ext estQ t U t T t T t= ⋅ −  is the heat 

flux exchange with the outside air. 

- ( ) ( ) ( )( ),T soil soil estQ t T t T t= −  is the heat exchange 

with the greenhouse soil. 
Here, the required task is to develop the above fuzzy 

systems that can match all the N pairs of collected tem-
perature data to any given accuracy. 

The structural and parametric identification of the 
above model can be implemented using the RLS- 
Neighbourhood fuzzy algorithm, described in section 3, 
by using daily input-output data points collected from 
the process. 

 
 

6. Experimental results 
The SLIM methodology has been applied to the identi-
fication of the dynamic behaviour of temperature in an 
agricultural greenhouse located at the UTAD campus. 
Three different fuzzy identification techniques have 
been applied to model the data: back propagation [2], 
RLS (section 3) and SLIM-PCS. The idea is to compare 
a system organized by the SLIM methodology against 
the systems produced by the reference methods: The 
structure for the organization of information adopted in 
this case was a Parallel Collaborative Structure (PCS). 
This structure uses two fuzzy subsystems whose out-
puts are added to produce the global output. SLIM is 
used to transfer information between the subsystems. 
The rules with lower relevance values are discarded. 

The identification of the above models was realized 
by using daily input-output data points collected from 
the process, between January 15 and February 4, 1998, 
at 1-minute sample time. Fig. 2 shows, for this period, 
the evolution of actuation variables of the greenhouse 
heating, ventilation and screen system. Two other data 
periods were used to test the models: 8 to 14 of January 
and 5 to 11 of April. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Evolution of actuation variables of the green-

house heating, ventilation and screen systems. 
 

The first step is to capture the greenhouse models in 
a PCS system from real data. The identification process 
was performed with the RLS-Neighbourhood identifi-
cation method, with a radius of 0.4 for the temperature 
model. Sets of 777 and 349 fuzzy rules have been used, 
respectively for the sub models (21) and (22). 

In order to proceed, the information is transferred 
from the sub-system f1 to f2 in the PCS structure. Previ-
ously, all the original rules are placed in the first level. 
The next step consists in diminishing the relevance of 
the rules in level 1 in favour of the rules in level 2. This 
is accomplished by tuning the membership functions of 
level 2 to compensate for the relevance rules in level 1. 
The optimisation procedure is achieved using equations 
(16) to (19). The number of rules chosen for level f2 is 
10 for each sub-model.  

The output of the resulting PCS system after apply-
ing the SLIM methodology is represented in Fig. 3 for 
temperature model: The results were obtained in the 
test period of 5 to 11 of April. Real data curves are also 
represented for comparison purposes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Temperature Fuzzy model. 
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The variance of the errors between the simulations 

and the experimental temperature data is indicated in 
Table 1. 

Experimental work shows that fuzzy identification 
systems created with the reference methods are made of 
a very large number of IF…THEN rules. The SLIM 
methodology, applied to the systems produced with the 
RLS method, has produced systems with a number of 
rules that varies between 2% and 20% of the number of 
rules of the other systems, with negligible differences 
in the behaviour, as illustrated in Table I. The “slimed” 
system, with a superior organization, contains the same 
level of information and uses a lower number of rules. 

The only identification method which produces a 
number of rules comparable to the one obtained with 
SLIM is the back-propagation method. However, it 
uses 1000 iteration cycles for capturing the data behav-
iour. Even so, it produces 50 rules, against 10 rules in 
the system using the SLIM methodology.  

 

Table 1: Errors, number of rules and iterations of the 
different temperature fuzzy system models. 

   Temperature Error - 
)
E ( E ) 

(ºC) 

Fuzzy 
Method 

n. of rules 
n. of 
itera-
tion 

8 to 14 
Jan. 

15 of Jan 
to 4 of 

Feb 

5 at 11 of 
April 

50 (day) Back-
Propaga-

tion 50 (night) 
1000 0,98 (0,79) 0,81 (0,56) 1,01 (0,77) 

777 (day) 
RLS 

349 
(night) 

1 0,88 (0,70) 0,74 (0,53) 1,07 (0,86) 

10 (day) MSIL-
PCS 10 (night) 

1 0.87 (0.72) 0.81 (0.64)  1.18 (1.02) 

 
 

7. Conclusions 
An experimental evaluation of the concept of relevance 
and SLIM methodology was presented in this paper. Its 
applicability and the good results obtained demonstrate 
the success of this methodology for the separation of 
information (SLIM) in the PCS structure. 

Two important advantages can be outlined: it is suit-
able for on-line use, and it is capable of describing the 
behaviour of the plant with a reduced number of lin-
guistic rules. This implies better readability of the 
process model. 

It is believed that the proposed approach for describ-
ing a system model by a set of fuzzy rules, which are 
then processed to extract relevant information, is viable 
for analysing and controlling real processes. 
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