
Generating Training Environment to obtain a Generalized Robot Behavior by
means of Classifier Systems

D. Sanchez, J. M. Molina, A. Sanchis

SCALab, Departamento de Informática
Universidad Carlos III de Madrid

Avda. de la Universidad 30, 28911 (Leganés)-Madrid, SPAIN

Abstract
Classifier System are special production systems
where conditions and actions are codified in order to
learn new rules by means of Genetic Algorithms
(GA). These systems combine the execution
capabilities of symbolic systems and the learning
capabilities of Genetic Algorithms. A Classifier
System is able to learn symbolic rules that allow to
react to new environmental situations. The capacity
of CS to learn good rules have been proven in
robotics navigation problem. In this work an anylisis
of the generalization capabilities of CS as functions
of the testing enviornment has been devoted. Results
show the improvement of the CS behavior when the
training environments change.

1. INTRODUCTION
Classifier Systems (CS) [1, 2, 3, 4, 5, 6, 7]

combine the advantages of rule-based systems
with the possibility of applying a domain-
independent learning system, such as Genetic
Algorithms. The relative value of the different
rules is one of the key information items to be
learnt in a CS. In order to promote this learning,
CS's force the rules to coexist in what is called
an information-based economy service. Rules
are made to compete, where the right to respond
to the activation flows from the highest bidders,
which will pay the value of their bids to the
rules that are responsible for their activation. A
chain of intermediaries is formed along this
path, ranging from manufacturers (detectors) to
consumers (actions to the environment). The
competitiveness of the economy assures that the
good (beneficial) rules survive and the bad ones
disappear. There is a high level of relation and
communication between the different levels of a
CS [6].

The conditions and messages of a CS form a
system of rules, making them a special class of
production system. One of the main problems
related with production systems is the
complexity of rule syntax. CS's find a way
around this problem by restricting each rule to a
fixed-length representation. This constraint has
two benefits: first, all the rules, within a
restricted alphabet, are syntactically meaningful
and, second, a representation using fixed-length
strings allows the application of genetic-type
string operators. This opens the door to search

of the space of permitted rules using Genetic
Algorithms [1].

As previously mentioned, traditional
Classifier Systems combine rule-based
knowledge representation with genetic learning.
There is an obvious difference between systems
that use Genetic Algorithms for learning and
Classifier Systems. In the first case, the solution
to the problem is fully encoded in the binary
representation used by the Genetic Algorithm,
that is, the evaluation of one individual is
tantamount to the evaluation of the whole
solution [7]. In Classifier Systems, however, the
evaluation of an output is equivalent to the
evaluation of a rule that partly contributes to
solving the problem. This evaluation is
distributed across all those rules that contribute
to the activation of the end rule, using the credit
reassignment algorithm [6]. In no case,
however, is it an evaluation of the system
composed of all the rules. This is the approach
proposed by the University of Michigan [4].
New rules or sets of rules are generated from
these evaluations. So, any rules that have been
activated and provide a satisfactory solution to
part of the problem will be the source of new
rules.

Traditional CS operation is based on three
fundamental concepts:

1. The solution of the global problem is a set
of rules (a subset of rules is a solution to a
particular situation, and a single rule may
even be a solution for a very specific
situation, although this is unusual).

2. Each rule's payment is distributed among
the rules that activated it in the internal
cycles.

3. The Genetic Algorithm allows rules to be
generated from the best rules, which leads,
theoretically, to an improvement in overall
system operation.

The way in which Classifier Systems operate
has some drawbacks, of which the following
deserve a special mention:

1. With regard to the system's ability to learn
chains of rules which, moreover, do not
break from one learning instant to another;
the loss of a rule from the chain can lead to
a loss of all the knowledge due to the
interrelations between rules. The rules
make sense not individually but only as
groups which are unknown a priori.

2. With regard to the need to apply the
discovery algorithm to generate
increasingly better classifiers and, finally,

3. With regard to the sequencing of the cases
put to the system in order to guide learning
towards an improvement in overall system
behaviour.

The problem addressed in this paper is in
particular how to combat the problem of over-
adaptation to the environments in a robot
navigation problem. To analyze and solve this
problem, a comparison using both a classical
learning process, learning from the same
starting point and a sequence of randomly
generated starting points is done.

Section 2 described the CS’s used in this
work, in Section 3, an overview of the
application of a CS to the navigation problem is
given, experiments are compiled in section 4
and some conclusions are founded in section 5.

2. CLASSIFIER SYSTEM

A Classifier System is composed of three

main components, which can be considered as
activity levels. The first level (Performance
Level) is responsible for giving responses
(satisfactory or otherwise) to solve the problem
proposed. At this level, there are system rules,
encoded by means of restricted alphabet
character strings. When this level is executed, a
response is given to a particular situation. The
fitness of the response to the problem that is to
be solved is measured by means of the reward
received by the above rule from the
environment. The second level (Credit
Assignment) evaluates the results obtained at
the lower level, distributing the rewards
received by the rules that provide the output
among all those that contributed to activating
each of the latter rules. As this is a reinforced
learning method, this evaluation can be adjusted
by applying a reward or payment by the
environment, whose value will be high if the
solution is satisfactory and low if it is not.
Reassignment can be carried out by means of
different algorithms [4, 8], of which the Bucket
Brigade [3] is the most commonly used and the
one employed in this paper. At this level, it is
not possible to modify system behaviour by

changing its rules; however, it is possible to
adjust their values and establish some sort of
hierarchy of good and bad rules. The mission of
the third level (Discovery) is to find new means
for the system to discover new solutions, for
which purpose a Genetic Algorithm (GA) is
used.

Rules can be activated in parallel at the CS
action level, whereas they are activated in series
in traditional production systems. During each
recognition cycle, a traditional system activates
a single rule. This rule-by-rule procedure is a
bottleneck for productivity growth; moreover,
many of the differences between production
systems architectures are related to the selection
of the best strategy for activating the rule in
question. CS's overcome this bottleneck by
allowing the parallel activation of rules during a
particular recognition cycle, or internal cycle.
So, different activities can be coordinated in
parallel in a CS. When a choice has to be made
between mutually exclusive environmental
actions or when the size of a rule has to be
pruned to adapt its length to that of the message
list, these decisions are left until the last
possible moment when they are selected
competitively, for example. So, the sequence of
operations of a traditional CS can be outlined as
shown in Table 1.

Table 1: Sequence of operations at the
action level of a traditional CS.

Step Operation

1 A k-length encoded message from the
environment comes in through the input
interface.

2 Clear messages list.

3 The environmental message is placed on the
messages list.

4 All the classifiers whose condition coincides
with the message will be activated. One message
can activate several classifiers.

5 The activated classifiers will send their messages
to the list.

6 Steps 4 and 5 will be repeated for n internal
cycles.

7 Finally, a message will be chosen to produce the
output through the respective interface.

A CS with n = 1 (see Table1) means that
step 6 is not applied. Then, the CS do not allow
rules chaining and all the learned rules are
input-output relations. In this sense, the
considered CS works in a reactive way.

3. NAVIGATION BEHAVIOR

A fundamental requirement for autonomous
mobile robots is navigation. This task gets the
robot from place to place with safety and no

damages. Approaches based on the classical
paradigms (abstraction, planning, heuristic
search, etc.) were not completely suitable for
unpredictable and dynamic environments.
Another approaches consider reaction as the
new paradigm to built intelligent systems. One
classical instance of this kind of architectures is
the subsumption architecture which was
proposed by Brooks [9] and has been
successfully implemented on several robots of
MIT and other institutes. The base of the
subsumption architecture is “behavior”. Each
behavior reacts in a situation and the global
control is a composition of behaviors. Different
systems, from finite state machines to fuzzy
controllers, have been used for the
implementation of these behaviors. The rules of
these behaviors could be designed by a human
expert, designed “ad-hoc” for the problem, or
learned using different artificial intelligence
techniques [10].

Machine learning has been applied to shape
the behavior of autonomous agents in this kind
of environments. Some of these techniques
become inapplicable to the learning reactive
behavior problem because they require more
information than the problem constraints allow.
Thus, it would seem reasonable to use an
automatic system that gradually builds up a
control system of an autonomous agent by
exploiting the changing interactions between the
environment and the agent itself. Some
approaches use Genetic Algorithms to evolve
fuzzy controllers [11,10], Evolution Strategies
to evolve connection weights in a Braitenberg
approach [12, 13] or Neural Networks to learn
behaviors [14].

In this work, we use a simulator (Figure 1)
based on a mini-robot Khepera [14], which is a
commercial robot developed at LAMI (EPFL,
Laussanne Switzerland) (Figure 2). The robot
characteristics are: 5.5 cm of diameter in
circular shape, 3 cm of height and 70 gr. of
weight. The sensory inputs come in from eight
infra-red proximity sensors. These sensors are
composed by two parts: an IR emitter and a
receiver. The emitter and the receiver are
independent, so that it is possible to use the
receiver to measure the reflected light (with the
emitter active) or to measure the environmental
light (without emission). The reflected light
measurement can give some information about
the obstacles surrounding the robot. In fact, this
measure is not only a function of the distance of
an object in front of the emitter but also the
environmental light and the object nature (color
and texture). So the value of distance is
modified by the measure of the ambient light

and the object nature, the light use is constant
and all the obstacles used have the same color
and texture. The robot has two wheels
controlled by two independent DC motors with
incremental encoder that allows any type of
movement. Each wheel velocity could be read
by an odometer.

Figure 1. Khepera Simulator Environment.

Figure 2. Khepera robot real and Simulated.

The sensors (proximity, ambient and
odometer) supply three kinds of incoming
information: proximity to the obstacles, ambient
light and velocity. Representing the goal by a
light source, the ambient information lets the
robot know the angle (the angle position in the
robot of the ambient sensor receiving more
light) and the distance (the amount of light in
the sensor) to this goal. The sensors used as
input in the CS are grouped as shown in Figure
3. Figure 4 shows the complete input message
of the CS. The considered values of the
codification are shown in Table 2.

Figure 3. Grouped Sensors in Khepera Robot.

Sensor 1 Sensor 2 Sensor 3 Angle Distance Velocity 1 Velocity 2

Near environment
description.

(AVOID)
Goal description.

(FOLLOW) Internal robot situation
description.

Figure 4. Grouped Sensors in Khepera Robot.

Tabla 2: Codification values of input message.

00 01 11 10
Obstacle

Distance (OD)
Very
Near

Near Far Very
Far

OD values 0 - 10 10 - 20 20 - 30 30 - ∞
Angle to Goal

(AtG)
0 - π/4 π/4 - π π - 7π/8 7π/8- 2π

AtG value Sensor
3

Sensors
4, 5, 6

Sensors
7, 0, 1

Sensor 2

Distance to
Goal (DG)

Very
Near

Near Far Very
Far

DG values 0 - 50 50 - 100 100 - 250 250 - ∞
Velocity (V) Slow Quick Back Stop

V values 4 8 -8 0

4. EXPERIMENTS

In this work, we present the validation of
several CS learned in two different situations:

• The first type (T1) considers always the
same environment in the learning phase.
The number of experiments of the first type
is six, all of then with the same object
configuration and robot starting point (see
Figure 5).

• The second type (T2) considers a random
robot starting point (see Figure 5 for object
configuration). Only one experiment is used
but five CS (the better ones) are validated.

Figure 5. Learning Environment Configuration.

4.1 Learning Phase

In the learning phase the reward function is
defined in equation 1.

P = Pobj +Pobs (1)

Where, Pobj is the reward for “FOLLOW”
(go to goal) and Pobs is the reward for “AVOID”
(surround obstacles). Each part of the reward is
defined by several variables, as could be seen in
equation 2.

P = Cobj * Vobj * Pobj + Cobs * Vobs * Pobs (2)

Where:
• Cobj is a constant to be determined

experimentally.
• Vobj is 1, when the robot is very far from

the goal; 2, when the robot is far from
the goal; and 4, when the robot is near
or very near from the goal.

• Pobj is the difference between the
previous and actual distance to the goal

• Cobs is a constant to be determined
experimentally.

• Vobs is 1, when the robot is far from
obstacles; 4, when the robot is near
from obstacles; y 8, when the robot is
very near from obstacles.

• Pobs) is the difference between the
previous and actual angle of the robot.

When the robot crashes in an object the
reward is –10. Values of the two constants are
obtained empirically from an ad-hoc designed
CS [15, 16]. This CS is composed of three types
of rules (A) (B) and (C). A type are related with
avoiding very near obstacles. B type are related
with follow the goal. C type are related with
avoiding far obstacles. Besides random rules are
added, D type.

Several environments with the same object
configuration (Figure 5) have been generated to
fit these constants. Starting positions of the
robot are included in table 3.

Tabla 3: Starting positions of the robot.

Coordinates Orientation
1.
2.
3.
4.

(100, 800)
(850, 730)
(100, 650)
(150, 180)

0
180
0

270

Empirical results are summarized in Table 4.
The selected values are Cobs = 3 and Cobj = 0,1
that obtain a high value for A and B type
(similar in the two cases), a value near initial
strength for C type and a low value for D type.

Tabla 4: Average results to fit constants.

Cobs Cobj A B C D
3 0,1 310 315 230 120
3 0,3 280 350 220 113
5 0,1 420 210 230 123
5 0,3 380 295 225 116

Besides the fitness function, the parameters
of the CS are:

• Time out to reach the goal: 2000 cycles
• Rule Number: 150
• Elitism : 0.3

• Mutation: 0.01

The genetic algorithm is applied when the
robot does not reach the goal in 20 runs. A run
is the execution of the robot from a starting
point until the robot reaches the goal or exceeds
the time out. In first type (T1), the learning
phase finishes when the robot reaches the goal
in all the runs. In the second type (T2), the same
strategy is applied but the robot never reaches
the goal in all the runs, then the learning phase
finished at 2000 runs.

Validation worlds: (a) Basic World,
(b) world 1 (c) world 2

Figure 6. Validation Environments.

4.2 Validation Phase

The validation process is as follows:

• Three different object configurations: basic
world, world 1 and world 2 of Figure 6.

• The CS validated are the six CS of first
type (T1) and the five CS of the second
type (T2). Each CS is validated using the
final distribution of strength of learning
phase (FS) and with initial strength
assignation (IS). In this way, twelve
validation of first type and ten of second
one. In the case of FS no reward from the
environment is needed.

• Each validation process consists in the
execution of 100 runs using random starting
positions far from the goal, see Figure 6.

The results of validation process are
compiled in Tables 5, 6, 7 and 8.

Table 5: .Validation results T1 with IS.
INITIAL STRENGTH Basic 1 2 Average

CS 1 55 40 48 48
CS 2 59 39 52 50
CS 3 87 64 80 77
CS 4 76 69 69 71
CS 5 68 55 52 58
CS 6 74 33 61 56

Average 70 50 60 60

Table 6: .Validation results T1 with FS.
INITIAL STRENGTH Basic 1 2 Average

CS 1 79 53 68 67
CS 2 73 61 52 62
CS 3 85 46 72 68
CS 4 80 59 73 71
CS 5 68 51 53 57
CS 6 65 37 56 53

Average 75 51 62 63

Table 7: .Validation results T2 with IS.
INITIAL STRENGTH Basic 1 2 Average

CS 1 88 62 73 74
CS 2 65 52 69 62
CS 3 81 72 77 77
CS 4 67 73 81 74
CS 5 91 70 76 79

Average 78 66 75 73

Table 8: .Validation results T2 with FS.
INITIAL STRENGTH Basic 1 2 Average

CS 1 89 57 84 77
CS 2 93 70 87 83
CS 3 82 71 84 79
CS 4 82 67 69 73
CS 5 95 75 79 83

Average 88 68 81 79

The results are summarized in the following
average values:

• T1 with IS: 60
• T1 with FS: 63
• T2 with IS: 73
• T2 with FS: 79

These values show that the randomly
generation of starting positions improve the

generality of the final solution in the CS. This
improvement could be measured as 13% in the
case of IS and 16% in the case of FS.

5. CONCLUSIONS

One of the major problems related to
Evolutionary Computation Techniques is
overadaptation. However, the use of CS allows
the system to learn gradually from training
cases. Each learning process with a individual
case can lead the strength to be distributed in
favour of a given type of rules that would in
turn be favoured by the Genetic Algorithm. If
this reasoning is extended to the entire learning
process, genetic diversity, which is so necessary
for learning, can disappear due to the growth of
a given type of rules in the population.

This is an especially serious problem when
there are very different rule types in the CS.
Basically, the proposed idea is to use different
training cases to cover different possibilities.
This strategy allows rules be more general
considering different situations.

The objective of this paper was to analysis
the effect of random generation of training
environments in the generalization capabilities
of CS.

These ideas allow the generation of general
behaviors, which solve problems that require a
solution with a high degree of generality. This is
a typical problem when a CS controls a robot.

6. REFERENCES

[1] J. Holland, “Adaptation in Natural and
Artificial Systems”. University of
Michigan Press, Ann Arbor, (1975).

[2] J. Holland, “Adaptive Algorithms for
Discovering and Using General Patterns
in Growing Knowledge Bases”,
International Journal of Policy Analysis
and Information Systems, vol. 4, 245-
268, (1980).

[3] J. Holland, “Properties of the Bucket
Brigade”. In Proc. of International
Conference on Genetic Algorithms and
their Applications, vol. 1, 1-7, (1985).

[4] J. Holland, “A Mathematical Framework
for Studying Learning in Classifier
Systems”, Physica D, 22, 307-317,
(1986).

[5] J.H. Holland, “Hidden order: how
adaptation builds complexity”. Reading
Massachusetts, Addison-Wesley, (1995)

[6] D.E. Goldberg, “Genetic Algorithms in
Search, Optimization, and Machine

Learning”. Addison Wesley, Reading
Massachusetts, (1989).

[7] M. Mitchell, “An Introduction to Genetic
Algorithms”, MIT Press, Massachusetts,
(1996).

[8] G.E. Liepins, M.R. Hilliard, M. Palmer
and G. Ranjaran, “Credit Assignment
and Discovery in Classifier Systems”,
International Journal of Intelligent
Systems, vol. 6, 55-69, (1991).

[9] Brooks R. A. “Intelligence without
Representation”. Artificial Intelligence,
47, 139-159, (1991).

[10] Matellán V., Molina J.M., Sanz J.,
Fernandez C. “Learning Fuzzy Reactive
Behaviors in Autonomous Robots”.
Proceedings of the Fourth European
Workshop on Learning Robots,
Germany, (1995).

[11] Lee M.A. and Takagi H., “Integrating
Design Stages of Fuzzy Systems using
Genetic Algorithms”. Second
International Conference on Fuzzy
Systems, 612-617, (1993).

[12] Isasi P., Berlanga A., Molina J. M.,
Sanchis A., “Robot Controller against
Environment, a Competitive Evolution”,
Special Session on Evolution
Computation, 15th IMACS World
Congress 1997 on Scientific
Computation, Modelling and Applied
Mathematics. Germany, 1997.

[13] Molina J.M., Sanchis A., Berlanga A.,
Isasi P., “Evolving Connection Weight
Between Sensors and Actuators in
Robots”. IEEE International Symposium
on Industrial Electronics. Gimaraes,
Portugal,1997.

[14] Mondada F. and Franzi P.I. “Mobile
Robot Miniaturization: A Tool for
Investigation in Control Algorithms”.
Proceedings of the Second International
Conference on Fuzzy Systems. San
Francisco, USA, (1993).

[15] Sanchis A., Molina J.M., Isasi P. And
Segovia, J. RTCS: a Reactive with Tags
Classifier System. Journal of Intelligent
and Robotic Systems, in press. 1999

[16] Molina J.M., Sanchis A., Berlanga A.
and Isasi P. An enhanced classifier
system for autonomous robot navigation
in dynamic environments. Intelligent
Automation and Soft Computing. Vol. 6,
2: pp. 113-124. 2000

