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Abstract: We present a genera heuristic technique that solves a timetabling problem, such as school
timetabling. It is based on a Hopfield-type neural network, whose complexity was significantly reduced by
incorporating a genetic algorithm into a very first stage of the timetabling process. The goal of the GA was to
initiali ze the network so that the number of neurons and their connections decreased, and as a consegquence the
computation speeded up. By using this technique, we were able to produce school timetables subject to both
hard and soft constraints in a reasonable polynomial time. The technique proved to be an efficient method for
solving a NP-compl ete combinatoria optimization problem.
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1 Introduction

Timetabling is a problem of assigning time slotsto a
set of eventsto satisfy several constraints. It isaNP-
complete multi-objective combinatorial optimization
problem, which requires considerable computational
effort for its solution [1]. There are several versions
of this problem, such as school timetabling,
university-course timetabling, examination
timetabling, employee timetabling, etc.

The literature on automated timetabling includes
several surveys [2], where various formulations of
the problem, as well as techniques and algorithms
used for its solution are discussed. During the last
few decades, many papers rdated to automated
timetabling have been published. In addition, many
applications have been developed and employed
with good success to handle particular instances of
the general timetabling problem.

In this paper we describe how the school
timetabling problem has been solved by using an
evolutionary approach. As the technique extends
easily to any timetabling problem, it could be useful
in general.

1.1 The School Timetabling Problem
The school timetabling problem can be briefly stated
as follows: For a certain school with T teachers, C
classes and R class-rooms, it is required to schedule
TR teacher-class-room triplets within a time limit of
P time dots producing a feasible schedule.

Constraints for this problem may be hard (i.e.
must be satisfied) or soft (i.e. should be satisfied as
far as possible). Hard constraints may include:
< Binary constraints (involve two or more events

that must not overlap in time), such as:

- A teacher cannot teach two or more classes
at atime.

- At most one teacher can teach a class at a
time.

- A classroom cannot be shared by two or
more classes at atime.

< Unary constraints (involve just one event), such
as.

- Some subjects may be excluded from taking
place in a given classroom, must not start at
a given time, or cannot be assigned to a
certain class or ateacher.

- Some subjects must take place in a given
(dedicated) classroom, must start at a given
time, or must be assigned to a certain class
or ateacher.

< Capacity constraints, such as:

- A class cannot be assigned to a particular
classroom unless the capacity of the
classroom is greater than or equa to the
number of pupilsin the class.

Soft constraints may include:

< Didactic gods (e.g. balancing or spreading out
the subjects over the period),

< Personal gods (e.g. keeping a certain time dot
free for a given teacher),



% Organizatoria goals (e.g. keeping some time
dlots or classrooms fixed for a certain class or a
teacher).

A feasible schedule is one that satisfies al hard
constraints of the problem, and minimizes the
weighted sum of costs (penalties) associated with its
soft constraints.

1.2 Timetabling Techniques

It has been proved that the general timetabling
problem has no exact solution, which is polynomial-
time in the length of the input [3]. However, it is
possible to apply an efficient heuristic algorithm that
runsin polynomial time and usually, but not always,
outputs an optimal solution that is guaranteed to be
close to the global solution.

Most of the early timetabling techniques were
based on direct heuristics. The idea was to simulate
the human way of solving the problem. Later on,
researchers proposed genera heurigtic techniques,
such as simulated annealing, tabu search, constraint-
logic programming and genetic algorithms [4]. The
problem has aso been tackled by a reduction to a
well-studied problem (like the graph colouring [9]).

Neurd networks [6] are dternative generd
heuristic  techniques for solving prediction,
classification and pattern recognition problems. In a
recent survey on neural networks, Smith [7] clarified
an extra potential of neural networks for solving
combinatorial optimization problems. However, the
idea of using neural networks to provide solutions to
difficult NP-hard optimization problems originated
in 1985 when Hopfield and Tank demonstrated that
the Travelling Salesman Problem [8] could be
solved using a Hopfield-type neural network
(HTNN) [9].

In this paper, we present a HTNN that results
most of the time in optimal solutions to the school
timetabling problem, which are reasonably well in
terms of solution quality and time performance. The
rest of the paper is organized as follows: in Section
2 we provide a brief description a HTNN; in Section
3 we present atimetabling technique that is based on
the HTNN; in Section 4 we introduce the GA as an
initial routineg; in Section 5 we evaluate the
technique through examples; and in Section 6 we list
our conclusions.

2 A Hopfield-type Neural Network

A HTNN can be described as a biologically inspired
mathematical tool for solving some of the
combinatorial optimization problems. The great

advantage is its ability to generate a solution to the
problem without necessity of training iterations.

A HTNN belongs to the class of recurrent neura
networks. It comprises a fully interconnected system
of n single layered computationa units (or neurons).
A strength (weight) of the connection between

neuron i and neuron j is determined by ;. i which

may be positive or negative depending on whether
the neurons act in an excitatory or an inhibitory
manner. An internal state of each neuron (u) is
equivalent to the weighted sum of the external states
of al connecting neurons. V; gives an externa state
of neuron i with the range [0,1]. It is bounded by the
asymptotes of a monotone-increasing function g(u,),
given by the following dynamical equations:
n
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where [; is an external input (or bias current) to
neuron i and —u, /7 is a passive decay. In the

absence of the external input and the inputs from
other neurons, this term causes u; to decay toward
zero at arate proportional to 7 . A typical choice of
the input-output relation g is a smooth sigmoid with
asymptotes 0 and 1. Thisis a bounded differentiable
rea function that is defined for all real input values,
and has a positive derivative everywhere. A frequent
choicefor g(u) is

+ .
(u) =0, @
where th denotes a hyperbolic function that is
related to the hyperbola, and is analogous to the
trigonometric function tangent. As long as g is
nondecreasing, it meets the Cohen-Grossherg
requirements for stability [10]. Thus, if the external
inputs are maintained at a constant value, a network
of neurons modeled by (1) will eventually
equilibrate, regardless of theinitial state.

The rapid computation power and speed of a
HTNN can be obtained through a simple hardware
implementation [11,12]. Yet, a problem in the
silicon implementation is a vast number of
connections (in a network of n neurons, there are n
connections). However, there are several choices of
architectures, which could efficiently be used to
achieve full network’s parallelism. A systolic ring
architecture is such an example that requires only n’
neurons operating in parale [13]. In addition,
recent progress in the area of FPGAs has enabled
speed advantages of hardware implementation to be
simulated on a digita computer using a
reconfigurable hardware [14].



3 A Timetabling Technique

Using the method proposed by Hopfield and Tank

[9], the following steps have to be performed to

obtain feasible school timetables:

1. An objective function has to be defined for the
problem. By minimization of this function, an
optimal solution that corresponds to a feasible
school timetable can be obtained. The objective
function has to be specified in terms of a
Liapunov functi on [15]:

z z W, ]VIVJ Z I|V| (3)
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because it guarantees convergence of a
corresponding HTNN to a stable state.

2. Parameters of the corresponding HTNN, such as
connection weights and external inputs, have to
be defined by considering both hard and soft
constraints of the problem. These parameters
determine the network’s energy function.

3. Initial conditions and updating rules have to be
defined to start and run the network.

4. A method for interpreting the final state of the
network as a problem’'s solution has to be
established.

3.1 The Objective Function

The objective function, which satisfies a set of m
hard and soft congtraints of the school timetabling
problem, is expressed in the terms of (3):
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Hard  congtraints  can be  expressed
mathematically as equalities or inequalities, such as:

TR P
O 0L THO O{L, CE S S tici Vep =N s

t=1 p=1

390 P 0 0 T Vet 51
OpOft..., P}, 0i O{L,... C}Z Vi G <1, (5)
OpOfL..., Ph, Ok O{L,..., R}: zvt,prk,t <n,.

t=1

The first equation of (5) ensures that a teacher i and
a class j meet exactly n.j times in the final
schedule, N+, being a non-negative integer matrix.
However, there exists possibly an optimal solution if
T
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of (5 prevent the teacher, the class and the

and only if

classroom conflicts, respectively (i.e. binary
constraints). We are given three binary matrices
Trur s Cour @Nd Reuqr, Such that
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Nr is a non-negative vector, where n, < Rdefines

the number of classrooms in which a subject k may
be given (i.e. the capacity constraint). If some unary
constraint is required, the corresponding equation of
(5) expressed in terms of inequality should be
rewritten in terms of equality, such as:

z ™

where ateacher y is required to give a subject in a
period x.

By reduction to the 3-SAT problem [8] the
school timetabling problem, which considers the
hard (binary, capacity and unary) constraints, was
proved to be NP-complete.

Soft constraints are defined in a similar way as
the hard constraints, but are beyond the scope of this

paper.

3.2 The Parameters and the Energy Function
The network’s energy function, which considers the
above-defined hard constraints of the problem, is
expressed with penalty terms:
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The network consists of TRIP "representation”
neurons plus (T +C + Zlenk) [P "dack" neurons.
The "dack" neurons are required to inforce

constraints expressed as inequalities [10]. As a
conseguence, also the binary matrices Tr,;r, Ccar

and Rgqz need to be extended into Trig.r.
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The network’s energy function of (8) is made
equivalent to the problem’s objective function of (4)
if the connection weights and the externa inputs
take the foIIowi ng values:
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The values of the connection weights and the
external inputs are saved in amatrix Qg pure and

avector | zp , respectively.

3.3 Thelnitial Conditions and the Updating
Rules

The HTNN that is defined by the energy function of
(8) can dtart its computation when an internal states
of each neuron i isinitiated, such as:
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where Risarandom value that is distributed linearly
on *0.1u,,, . Thisis required to prevent the network
become trapped in an unstable equilibrium.

The computation of the above-defined network
can be performed by executing the following
updating rules:
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3.4 Thelnterpretation Method
A school timetable can be represented as a
permutation matrix Sig.p, Where s, corresponds to

Vip- A matrix row t corresponds to the t" triplet
teacher-class-classroom (<i,j,k>), while a column p
corresponds to the p™ period. The final schedule
generated by the network is interpreted by replacing
each matrix entry with either 1 or 0, depending on
whether the corresponding neuron state is 'high’ or
Tow'. If s,=1, ateacher i can teach aclassj in a
classroom k in a period p.

4 The Genetic Algorithm

We applied a genetic algorithm (GA) [4] to reduce
the number of "dack" neurons. Following the
assumption that a classroom with the adequate
capacity can be selected for a pair teacher-class
before the network’s run-time, the last inequality
constraint of (5) could be simplified, such as

R
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The GA codes parameters of the problem’s search
space as finite-length strings over some finite
alphabet. It works with a coding of the parameter
set, not the parameters themselves. The agorithm
employs an initia population of strings, which
evolve into the next generation under the control of

probabilistic transition rules—known as randomized
genetic operators—such as selection, crossover and



mutation. The fitness function evaluates the quality
of solutions coded as strings. This information is
then used to perform an effective search for better
solutions. There is no need of other auxiliary
knowledge. The GA tends to take advantage of the
fittest solutions by giving them greater weight, and
concentrating the search in the regions of the search
space that show likely improvement.

The GA is different from traditional techniques
because of its intrinsic paralelism (in evaluation
function, selections) that alows working from a
broad database of solutions in the search space
simultaneoudly, climbing many peaks in parald.
Thus, the risk of converging on a local optimum is
low. The random decisions made in the GA can be
modeled using Markov chain analysis to show that
each finite GA will aways converge to its global
optimum region [16].

In spite of its simplicity, the GA has proved to be
an efficient method for solving various optimization
and classification problems, in areas ranging from
economics and game-theory to control-system
design.

4.1 Encoding

In our case, the parameters (i.e. the indexes of
classrooms) were coded as strings over the alphabet
N* of non-negative integer values. Using a symbolic
presentation of a string with T [C parameters (i.e.
teacher-class pairs) gives:

S=S415S > Scr c>

4.2 Fitness Evaluation

Following the genetic operators the new population
had to be evaluated. Here, each string s (solution
candidate) of the population was decoded into a set
of classroom indexes. Its fitness was defined by the
following quantity

T C
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This informatlon was used to perform an effective
search for feasible solutions, i.e. strings with the
shortest schedule length. A solution was considered
to be feasible if and only if its fithess value was less
than or equal to P. Feasible solutions including more

appropriate classrooms for given subjects (teacher-
class pairs) were considered to be better solutions.

4.3 The Modifications of the Network

By incorporating the GA into the timetabling
technique, several modifications are required, such
as
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As TR dso reduces, dimensions of the matrix
Qrpxrp and the vector |z become suitably

smaller. In addition, the number of triplets TR
dividesfor factor R

MeTRey =

5 The Evaluation of the Technique

In order to evaluate the timetabling technique, we
selected two specific school timetabling problems,
one simplified (artificially constructed) and one
taken from readl life (Table 1). The red-life problem
had to satisfy the hard (binary, unary and capacity)
constraints as well as several soft constraints.

We developed software by using the Borland
Delphi programming tool to set the network’s
parameters (i.e. connection weights and externa
inputs) and select a set of classrooms for each pair



teacher-class. This software is an implementation of
the GA.

Otherwise, we applied the Wolfram Research
Mathematica  [17] prototyping  tool  for
experimentation with the neural network. The
results presented in Table 1 demonstrate that the
complexity of the neural network increases with the
number of teachers, classes and classrooms.

233 MHz o o "
Pentium zE B2 5 2 |58
with g S=| 3 g B
e4MBRAM | FE (88 2 2 |£7
Simplified | 22212 | 5 1000 | on o
problem 4(10) | secs. 70 60 0%
Real-life 7|2/9]21| 180 5000 | oz
problem 12(30) | secs. 630 900 5%

Table 1. Results for two school timetabling
examples.

We tried to improve the results by applying two
modifications of the HTNN:

1. During the state evolution, we were increasing
the gain parameter (A, see (2)) exponentialy.
As a consequence, the state evolution ended
much quicker as before (in the real-life problem,
in less than 500 iterations).

2. We collected feasible problem solutions
generated by using the network, and applied a
GA to improve the final result. We used the
elitism strategy [18] to select the best-ranked
solutions, and applied the multi-point crossover
and the mutation genetic operators to generate
new populations of feasible schedules.
However, this approach has not contributed
much improvement in the performance of the
method.

6 Conclusions

In this paper we have presented an evolutionary
approach to the school timetabling problem. Our
approach uses the HTNN to perform the timetabling
and the GA to simultaneously initialize and optimize
the network. By using this approach we were able to
produce feasible schedules in a polynomial time.
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