Self-Improving Genetic Programming

Roland Olsson

Ostfold College

1750 HALDEN
Norway

Roland.Olsson@hiof.no http://www-ia.hiof.no/~rolando

Abstract: The paper dicusses how ADATE, a system that is not GP but similar in spirit,
can automatically improve itself by synthesizing parts of its own code. Great care must be
taken to avoid overfitting to training data during such self-improvement. ADATE is based on
Kimura’s generally accepted theory of neutral mutations in evolutionary biology. Self-improvement
is discussed both for neutral mutations, also called semantics-preserving program transformations,

and for more “brutal” mutations that almost always can be quite small.

Keywords: Program synthesis, automatic programming, self-adaption, neutral random walks

1 Introduction

A self-improving genetic programming (SIG) sys-
tem modifies parts of itself to become better at
automatic programming. In other words, the sys-
tem produces an improved system which may pro-
duce another even more improved system which
may produce yet another improved system and so
on.

In this paper, we exhibit a simple form of self-
improvement for Automatic Design of Algorithms
Through Evolution (ADATE) [6]. ADATE pri-
marily relies on neutral “mutations”, aiming at
exploration through walks along neutral networks
in program space. Note that neutral mutation is
just another name for semantics-preserving pro-
gram transformation, which is very well studied
in compiler design. Some of ADATE’s transfor-
mations, for example function invention (ABSTR)
[7], were actually found by studying compilation of
purely functional programs.

In general, there are many different ways to self-
improvement of mutation operators. Here are some
alternatives ordered according to the complexity of
the part of a mutation operator that needs to be
automatically synthesized.

1. Direct automatic synthesis of the entire code
used for mutation.

2. Synthesis of classification code that ranks syn-
thesized expressions according to their ex-
pected usefulness.

3. Reshaping the distribution of synthesized ex-
pressions so that they cover as many equiva-
lence classes as possible with a limited number
of syntheses and without unnecessary increase
in expression size.

4. Automatic synthesis of semantics-preserving
rewriting rules that are employed for neutral
random walks.

5. Adapting numerical parameters such as over-
all mutation frequency and conditional or
unconditional probabilities of occurrence for
given functions and constants.

A major problem with alternatives one, two and
five is to find so many relevant training inputs
i.e., fitness cases, that the automatically synthe-
sized mutation operator is not specialized to them.
Thus, overfitting is difficult to overcome for alter-
natives one, two and five.

The complexity of the self-improvement required
for alternative five is smaller than that required
for alternative two, which in turn is less complex
than alternative one. Due to Occam’s razor, the
problem of finding training inputs becomes easier

to solve as we move from alternative one to two
and from two to five.

However, alternatives three and four do not suf-
fer from a similar generalization problem since
much relevant training data is easy to find. Con-
sider a mutation operator for a specific set of func-
tions and constants. With such a set, we synthe-
size at least one thousand expressions and label
them according to the output they produce. The
ones with the same output for all training inputs
are regarded as equivalent and receive the same la-
bel. Note that such equivalence classes is all that
is needed for fitness computation in alternatives
three and four.

Below, experimentally show self-
improvement according to alternative three
for the synthesis of boolean expressions using the
functions not, and and or. However, due to the
overwhelming importance of neutrality in both
natural and artificial evolution, alternative four is
more promising in general, but we have not yet
examined it experimentally.

We will refer to alternative three as SIG-
reshaping. Alternative four will be called SIG-
rewriting.

The next section gives a brief overview of re-
lated work. Section three presents theory and ex-
periments for SIG-reshaping. SIG-rewriting is dis-
cussed in section four. The final section contains
preliminary conclusions.

we

2 Literature overview

Our inspiration for studying self-improvement
comes from running n-dimensional numerical opti-
mization experiments on self-adaption using Evo-
lution Strategies (ES) [8, 9]. An ES individual is
mutated by first randomly changing mutation step
sizes and then employing these new step sizes to
mutate the object variables. Thus, good step-sizes
indirectly have a higher probability of surviving
since they are more likely to lead to a positive mu-
tation.

We tried an analogous experiment in GP, where
each individual carried rejection rules for muta-
tions instead of step sizes. However, this approach
failed completely due to over-specialization to the
training data i.e., the genealogical history trace.

Lee Spector [11] is trying an even more radical
form of self-adaption, Pushpop, where each indi-

vidual contains the code necessary for its own re-
production and diversification. However, his ex-
perimental results are preliminary and it remains
to be seen if Pushpop will run into the same over-
specialization quagmire as we did.

Parts of our work was inspired by Kimura [4]
who is the most famous proponent of the neu-
tral theory in evolutionary biology for the past 30
years. He argues that a substantial fraction of all
natural mutations are neutral and that very few
of the other ones are positive i.e., increase fitness.
Neutral mutations enable evolution to explore fit-
ness plateaus and find suitable jump points where
it is easy to move to a higher plateau.

Shipman [10] et. al. discuss redundant genotype-
phenotype mappings and how genotypes form neu-
tral networks that make it possible to explore geno-
type space using the simplest of mutations.

3 SIG-reshaping

The primary goal with SIG-reshaping is to
avoid trying too many equivalent expressions,
for example synthesizing and using both E and
not (not (E)) or both or(E;,E;) and or(E;,E;)
for arbitrary boolean expressions E, E; and Es.

The space of all expressions with a size not ex-
ceeding a given limit is unsuitable for uniform ran-
dom sampling if some equivalence classes have huge
cardinalities, whereas other classes are quite small
and very rarely sampled even though they contain
desirable expressions.

SIG-reshaping aims at alleviating this oversam-
pling of huge equivalence classes by automatically
synthesizing an acceptance predicate that deter-
mines if a given synthesized expression is used.
For example, such a predicate can choose to reject
not (not (E)) and also or (E; ,Es) if E5 is less than
E1 according to some total ordering of expressions.

We wrote an ADATE specification for synthesis
of an acceptance predicate as follows.

First, we used ADATE’s expression synthesis
subroutine to generate all 1055 boolean expressions
of size five or less consisting of not, and, or, false,
true and three variables X1, X2, X3. Then, we eval-
uated each expression for all eight possible values
of the input (X1, X2, X3) and labeled each expres-
sion with the equivalence class that it belongs to.
There are 36 equivalence classes with highly vary-
ing cardinalities for this expression space.

For example, the equivalence class that was
given number 36 contains only the following four
expressions, here shown with the label.

and (
and (
and (
and (

X3, or(X1, X2))
or(X2, X1), X3)
or(X1, X2), X3)
X3, or(X2, X1))

)
X)
X)
)

Our web site, given at the top of the first page,
contains an ADATE specification file for SIG-
reshaping as well as the source code of ADATE
itself, which should make it easy to reproduce the
results below.

The fitness function requires that a synthesized
acceptance predicate accepts at least one minimum
size expression in each equivalence class and rejects
as many other expressions as possible. We first
tried without the minumum size requirement but
then found that the synthesized predicates some-
times only accepted the biggest member of a class,
which is undesirable in general due to Occam’s ra-
ZOr.

Given this fitness function and a total ordering
on expressions, ADATE generated an acceptance
predicate that rejects 999 out of the 1055 expres-
sions in the space while still accepting at least one
minimum size member of each class. This pred-
icate was fairly easy for ADATE to produce, re-
quiring only 15 hours of CPU time on our 16-node
Beowulf cluster with 800 MHz Pentium III pro-
cessors. The synthesized predicate £ contains one
automatically invented help function which is used
together with £ in a mutually recursive fashion. It
is not yet clear how the code for £ works. Expla-
nations from readers of this paper are welcome.

To test if this acceptance predicate leads to self-
improvement, we ran four, five and six bit xor
problems, also called even parity, both without and
with the predicate. In the latter case, the predicate
was used to reject boolean expressions synthesized
by ADATE’s only non-neutral “mutation” opera-
tor, the so-called R-transformation, which is quite
different from a standard GP mutation operator.

For example, ADATE does not use randomiza-
tion in any way, which means that only one run was
performed for each example in table 1. ADATE
systematically generates expressions in order of in-
creasing size, which is not as combinatorially un-
reasonable as it may seem since neutral walks in
program space typically lead to a program that

Specification | N=0 | N=1 | N=2 |

xord 3.2-10° | 3.1-10* [2.5-10%
xordsig 8.2-10* [4.0-10% | 8.5-10*
xorh 3.5-10° 1 9.6-10° | 2.4 -10°
xorbsig 4.0-10° | 1.9-10° | 2.5-10°
xor6 4.8-107 [1.5-107 | 1.3 - 107
xorbsig 1.9-107 [6.9-10° | 1.7 - 10°

Table 1: Total number of evaluations required for
finding a 100% correct program.

only needs an extremely small change to be im-
proved. Amazingly, ADATE can generate code for
the 6-bit even parity problem synthesizing only ex-
pressions of size three or less!

The parameter N in table 1 indicates the degree
of population redundancy. ADATE maintains a
chain of bigger-and-better so-called base individ-
uals. FEach base is the smallest member found
so far in the neutral network that it represents.
ADATE’s population contains about 4N represen-
tatives of the neutral network for a base in addition
to the base itself.

As can be expected from a complex evolution-
ary process, the variance in table 1 is high, but it
appears that self-improvement has taken place. A
remarkable result from the table is that the SIG
version of the six bit xor problem found a correct
program without function invention using only 1.7
million evaluations. This may be one of the best
results reported in GP literature for this problem
without invented functions. For example, Koza [3]
and Chellapilla [2] report results without ADF's
only for the three, four and five bit even parity
problems but not for the six bit problem. Note
that ADFs are different from the ABSTR trans-
formation in ADATE.

The performance advantage of the SIG versions
is smaller than anticipated since the removal of
redundant boolean expressions decreases the con-
nectivity of neutral networks which may lead to
missing links in the most continuous genealogical
chains.

4 SIG-rewriting

In ADATE, as well as in natural evolution, neu-
tral walks in genotype space are essential for avoid-
ing combinatorial explosions due to complex muta-

tions. For a given mutation complexity limit, the
set of negative mutations usually has much higher
cardinality than the set of neutral mutations which
in turn is bigger than the set of positive mutations.

Combinatorially, it is typically much cheaper to
move through a sequence of neutral mutations fin-
ished by a minute positive mutation than to di-
rectly search for a single more complex positive
mutation.

ADATE’s so-called compound transformations
[6] were designed according to this principle and
consist of a large neutral part followed by a small
and raw combinatorial search for a positive i.e.,
improving, transformation. The neutral trans-
formations ABSTR, CASE-DIST and DUPL in
ADATE are formulated as semantics-preserving
rewrite rules.

ABSTR is basically a non-deterministic inverse
of the inlining (S-expansion) transformation used
by optimizing compilers. CASE-DIST changes the
scope of case- and let-expressions. DUPL inserts
a case-test with all alternatives equal to a chosen
expression in the program and does not change se-
mantics as long as the analyzed expression does
not raise exceptions.

These three semantics preserving transforma-
tions are general and probably difficult to improve
automatically. We will now outline how ADATE
can invent rewrite rules for problem-specific trans-
formations that were not anticipated when we de-
signed ADATE. This is SIG-rewriting and can be
implemented in a way similar to a so-called se-
quential covering algorithm [5] for learning sets of
propositional or first-order rules.

ADATE is used instead of the LEARN-ONE-
RULE algorithm called as a subroutine by the
main sequential covering algorithm. KEach call to
LEARN-ONE-RULE corresponds to a complete
ADATE run that produces a program capable of
transforming some expressions so that their seman-
tics is preserved.

For example, if boolean expressions are consid-
ered, such an ADATE run may yield a program
like
fun £ E = not(not E)

This rewrite rule obviously increases the size of
a program and can lead to bloating. Another run
may then give the program

fun £ E =
case E of
and(E1, E2) => and(E2, E1)
| _=> 7

This program only knows commutativity for
and. It outputs ADATE’s built-in ? constant,
meaning “don’t know” and implemented as excep-
tion raising, for all expression trees not having and
in the root.

The ADATE specification for producing boolean
rewriting rules is similar to the one used for
boolean SIG-reshaping with the same 36 equiva-
lence classes. But these classes are now expanded
to include all expressions up to size seven, However,
only expressions of size up to five are employed as
training inputs. This enables the synthesis of size-
increasing rewriting rules.

The fitness function requires that each output
is in the same equivalence class as the input and
measures the number of input-outputs that are not
covered by any previously generated rule.

Before generating children from a parent pro-
gram using ADATE’s R transformation, the parent
is modified through a neutral random walk using
the automatically synthesized rewrite rules. Each
step in this walk consists of choosing a random
subexpression and changing it according to a ran-
domly chosen rule. The walk is terminated as soon
as the current program is more than 50% bigger
than the parent or when one thousand steps have
been taken. The program to be subjected to com-
pound ADATE transformations is randomly cho-
sen among all intermediate programs visited dur-
ing the walk.

Provided that all rewrite rules preserve seman-
tics, the only drawback with the walk is the in-
crease in size, i.e., bloating.

5 Conclusions

In both natural and artificial evolution, genotype
space consists of neutral networks such that all
genotypes in a network have practically equal fit-
ness. The most important question in evolution-
ary theory is how to make the transition from one
neutral network to another that has higher fitness.
Artificial evolution should proceed through a se-
quence of such transitions between neutral net-
works. Note that a neutral network roughly corre-

sponds to a species in nature and that crossover
should occur only between members of a neu-
tral network instead of the usual haphazard GP
Crossover.

The transition to a new neutral network i.e., a
new species, consists of the following.

1. A neutral walk along the current network aim-
ing at visiting genotypes located close to a new
network.

2. A brutal but extremely small mutation that is
not neutral and bridges the small gap to the
new network from a suitable jump point in the
current network.

The compound transformations in ADATE were
designed according to this model of transition from
one species to the next. In ADATE, the first part of
a compound program transformation is the neutral
walk and the second, typically small, part is the
brutal mutation.

We have discussed self-improvement for both
parts. The self-improvement method for part two
is SIG-reshaping that changes the mutation dis-
tribution whereas SIG-rewriting is designed to in-
crease the number of connections in a neutral net-
work and thereby increase the number of genotypes
reachable with a neutral walk.

The experimental data presented above is inad-
equate for firm conclusions about the usefulness of
self-improvement. However, the results are hope-
fully strong enough to motivate the international
evolutionary computation community to pursue
similar lines of research.

The ADATE source code is freely available and
can serve as a test bench for numerous other exper-
iments on neutral evolution and self-improvement
than the small ones reported in section three.

References

[1] P. Angeline, Adaptive and Self-Adaptive Evo-
lutionary Computations, Computational In-
telligence: A Dynamic Systems Perspective,
IEEE Press, 1995.

[2] K. Chellapilla, A Preliminary Investigation
into Evolving Modular Programs without
Subtreee Crossover, Proceedings of The Third
Annual Genetic Programming Conference,
Morgan Kaufmann, 1998.

[3] J. R. Koza, Genetic Programming II: Au-
tomatic Discovery of Reusable Subprograms,
MIT Press, 1994.

[4] M. Kimura, Population Genetics, Molecular
Evolution, and the Neutral Theory: Selected
papers, University of Chicago Press, 1994.

[6] T. M. Mitchell, Machine Learning,
WCB/McGraw-Hill, 1997, page 276.

[6] J. R. Olsson, Inductive functional program-
ming using incremental program transforma-
tion, Artificial Intelligence, Vol. 74, No. 1,
1995, pages 55—83.

[7] J. R. Olsson, How to Invent Functions, Eu-
ropean workshop on genetic programming,
Springer Verlag, 1999.

[8] I. Rechenberg, Evolutionsstrategie, Opti-
mierung technischer Systeme nach Prinzip-
ien der biologischen Evolution, Frommann-
Holzboog, 1973.

[9] H. P. Schwefel, Numerical Optimization of
Computer Models, Wiley, 1981.

[10] R. Shipman, M. Shackleton, M. Ebner and R.
Watson, Neutral Search Spaces for Artificial
Evolution: A Lesson from Life, Proceedings of
the Seventh International Conference on Ar-

tificial Life, MIT Press, 2000.

[11] L. Spector, Autoconstructive Evolution:
Push, PushGP, and Pushpop, Proceedings of
the Genetic and Evolutionary Computation
Conference (GECCO), Morgan Kaufmann,
2001.

