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Abstract: - This paper proposes fuzzy entropy minimization as an emergent property of holonic structures. When 
applied in the context of multi-agent systems this emergent property leads to automatic clustering of the agents into 
holonic organizations. When modeling enterprises as software agents the property turns into an inherent 
characteristic of holonic virtual organizations that enables clustering the best collaborative partners and/or 
resources at all levels of a holonic (virtual) enterprise. Applicability of the method to on-line reconfiguration of 
dynamic virtual organizations is proven by a simulation example. 
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1 Introduction: Emergent Holonic 

Structures  
A holonic structure is a holarchy of collaborative entities, 
where the entity is regarded as a holon. (Here the term 
entity is used in a broad, generic manner: entity, system, 
‘thing’, agent). The term holon was coined by Artur 
Koestler to denominate entities that exhibit simultaneously 
both autonomy and cooperation capabilities which demand 
balance of the contradictory forces that define each of 
these properties on a behavioral level. One main 
characteristic of a holon is its multiple granularity 
manifested through replication into self-similar structures 
at multi-resolution levels. Such a heterarchical 
decomposition turns out into a nested hierarchy of fractal 
entities – named holarchy. A holonic entity has three  
 
 

Fig.1 Dynamic Clustering Pattern in 
the Holonic Enterprise  

levels of granularity, Fig. 1 [1]:  
 
 
1.1 Global inter-entity collaborative level 
At this level several holon-entitys cluster into a 
collaborative holarchy to produce a product or service. The 
clustering criteria support maximal synergy and efficiency.  
Traditionally this level was regarded as a mostly static 
chain of customers and suppliers through which the 
workflow and information was moving from the end 
customer that required the product to the end supplier tat 
delivered it. In the holonic entity the supply chain 
paradigm is replaced by the collaborative holarhy 
paradigm (Fig. 1). With each collaborative partner 
modeled as an agent that encapsulates those abstractions 
relevant to the particular cooperation, a dynamic virtual 
cluster (Fig. 1) emerges that can be configured on-line 
according to the collaborative goals (e.g. by finding the 
best partners for the collaboration). Such a dynamic 
collaborative holarchy can cope with unexpected 
disturbances (e.g. replace a collaborative partner that can 
not deliver within the deadline) through on-line re-
configuration of the open system it represents. It provides 
on-line order distribution across the available partners as 
well as deployment mechanisms that ensure real-time 
order error reporting and on-demand order tracking.  
 
 
1.2 Intra-entity level 
Once each entity has undertaken responsibility for the 
assigned part of the work, it has to organize in turn its own 



internal resources to deliver on time according to the 
coordination requirements of the collaborative cluster. 
Planning and dynamic scheduling of resources at this level 
enable functional reconfiguration and flexibility via 
(re)selecting functional units, (re)assigning their locations, 
and (re)defining their interconnections (e.g., rerouting 
around a broken machine, changing the functions of a 
multi-functional machine). This is achieved through a 
replication of the dynamic virtual clustering mechanism 
having now each resource within the entity cloned as an 
agent that abstracts those functional characteristics 
relevant to the specific task assigned by the collaborative 
holarchy to the partner. Re-configuration of schedules to 
cope with new orders or unexpected disturbances (e.g. 
when a machine breaks) is enabled through re-clustering 
of the agents representing the actual resources of the 
entity, Fig. 2. The main criteria for resource (re)allocation 
when (re)configuring the schedules are related to cost 
minimization achieved via multi-criteria optimization.   

 
 

1.3 Machine (physical agent) level 
This level is concerned with the distributed control of the 
physical machines that actually perform the work. To 

 

enable agile manufacturing through the deployment of 
self-reconfiguring, intelligent distributed automation 
elements each machine is cloned as an agent that abstracts 
a major role in the structural organization of any 
holonic entity is played by the mediator agent (Fig. 
4). In the sequel we will prove that by embedding 
fuzzy entropy minimization within the mediator 
agent at the logical level - a perfect holonic structure 
at the physical level – is reached. 
 
 
2 A Fuzzy Model for Holonic 

Structures 
 
2.1 The Approach 
A multi-agent system (MAS) is regarded as a 
dynamical system in which agents exchange 
information organized through reasoning into 
knowledge about the assigned goal [2]. Optimal 
knowledge corresponds to an optimal level of 
information organization and distribution among the 
agents. It seems natural to consider the entropy as a 
measure of the degree of order in the information 
spread across the multi-agent system [3]. This 
information is usually uncertain, requiring several 
ways of modeling to cope with the different aspects 
of the uncertainty. Fuzzy set theory offers an 
adequate framework [4] that requires the use of 
generalized fuzzy entropy [5].  
 
One can envision the agents in the MAS as being 
under the influence of an information “field” which 
drives the inter-agent interactions towards achieving 
“equilibrium” with other agents with respect to this 
entropy [4]. The generalized fuzzy entropy is the 
measure of the “potential” of this field and 
equilibrium for the agents under this influence 
corresponds to an optimal organization of the 
information across the MAS with respect to the 
assigned goal’s achievement. When the goal of the 
MAS changes (due to unexpected events, such as 
need to change a partner, machine break-down, etc.) 
the equilibrium point changes as well inducing new 
re-distribution of information among the agents with 
new emerging agent interactions. This mechanism 
enabling dynamic system re-configuration with re-
distribution of priorities is the essence of the 
emergent dynamic holonic structure. In the next sub-
sections of this section, we will prove that when the 
agents clustering into a holonic structure the MAS 

Fig.3 Physical and Logical Levels of a 
Holonic Entity 

Fig.2 Task Distribution Pattern at the 
Intra-Enterprise level 



reaches equilibrium, which ensures optimal 
accomplishment the assigned goal (task).  
 
 
2.2 Vagueness Modeling in MAS – The 

Problem 
It is already well known that among the other 
uncertainty facets, vagueness deals with information 
that is inconsistent [6]. In the context of MAS, this 
means that the clear distinction between a possible 
plan reaching the imposed goal and a plan leading, 
on the contrary, to a very different goal is hardly 
distinguishable. We call partition the clustering 
configuration in which the union of all clusters is 
identical to the agent set when clusters are not 
overlapping. If the clusters overlap (i.e. some agents 
are simultaneously in two different clusters) the 
clustering configuration is called a cover. We define 
a plan as being the succession of all states through 
which the MAS transitions until it reaches its goal. 
Each state of the MAS is described by a certain 
clustering configuration covering the agents set. 
 
If the information spread across the MAS is vague, 
one can construct only a collection of source-plans 
(i.e. sets of clustering configurations considered as 
sources for plans) associated with a specific global 
goal. There are two main differences between a plan 
and a source-plan. First, in a plan, the occurrence of 
the clustering configurations in time is clearly 
specified, whereas in a source-plan it is usually 
unknown. Secondly, in a plan, the configurations 
may be repeating while the source-plan includes only 
different configurations that can be extracted to 
construct a plan, following some strategy.  
 Starting from this uncertain information, the 
problem is to provide fuzzy models of MAS, useful 
in selecting the least uncertain (the least vague) 
source-plan. 
 
2.3 Mathematical Formulation of the Problem 
Denote by 

NnnN a
,1

}{
∈

=A  the set of 1≥N  agents 

that belong to the MAS. Based only on the initial 
uncertain information, one can build a family 

Kkk ,1}{ ∈= PP , containing 1≥K  collections of 

clustering configurations, for a preset global goal. 
Each kP  ( Kk ,1∈ ) can be referred to as a source-
plan in the sense that it can be a source of partitions 
for a MAS plan. Thus, a source-plan is expressed as 

a collection of 1≥kM  different clustering 
configurations covering NA , possible to occur 
during the MAS evolution towards its goal: 

kMmmkk P ,1, }{
∈

=P . The only available information 

about kP  is the degree of occurrence associated to 
each of its configurations, mkP , , which can be 
assigned as a number ]1,0[, ∈mkα . Thus, the 
corresponding degrees of occurrence are members of 
a two-dimension family 

kMmKkmk ,1;,1, }{
∈∈

α , which, as 

previously stated, quantifies all the available 
information about MAS.  
 In this framework, we aim to construct a measure 
of uncertainty, V  (from “vagueness”), fuzzy-type, 
real-valued, defined on the set of all source-plans of 

NA  and optimize it in order to select the least vague 
source-plan from the family Kkk ,1}{ ∈= PP : 
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where Kko ,1∈ .
 
The cost function V  required in problem (1) will be 
constructed by using a measure of fuzziness [6]. We 
present hereafter the steps of this construction. 
 
 
3 Emergence of Holonic Structures 
 
3.1 Constructing fuzzy relations between 

agents 
We model agent interactions through fuzzy relations 
considering that two agents are in relation if they 
exchange information. As two agents exchanging 
information are as well in the same cluster one can 
describe the clustering configurations using these 
fuzzy relations. The family of fuzzy relations, 

Kkk ,1}{
∈

R , between the agents of MAS ( NA ) is built 

using the numbers 
kMmKkmk ,1;,1, }{

∈∈
α  and the family 

of source-plans Kkk ,1}{
∈

P . Consider Kk ,1∈  and 

kMm ,1∈  arbitrarily fixed. In construction of the 

fuzzy relation kR , one starts from the observation 
that associating agents in clusters is very similar to 
grouping them into compatibility or equivalence 
classes, given a (binary) crisp relation between them. 
The compatibility properties of reflexivity and 



symmetry are fulfilled for covers (overlapped 
clusters), whereas the equivalence conditions of 
compatibility and transitivity stand for partitions. 
The corresponding crisp relation denoted by mkR , , 
can be described by the statement: two agents are 
related if they belong to the same cluster. The facts 
that a  and b  are, respectively are not in the relation 

mkR ,  (where Na,b A∈ ) are expressed by “ baR mk , ” 
and “ bRa mk ,¬ ”. The relation mkR ,  can also be 
described by means of a NN ×  matrix 

NN
mkH ×ℜ∈, - the characteristic matrix - with 

elements ( ],[, jiH mk ) being only 0 or 1, depending 
on whether the agents are or not in the same cluster. 
(Here, ℜ  is the real numbers set.) Thus:  
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Nji ,1, ∈∀ .  
This matrix is symmetric (obviously, if baR mk , , then 

abR mk , ) and with unitary diagonal (since every 
agent is in the same cluster with itself). It allows us 
to completely specify only the configuration mkP , , as 
proves the following result (see the proof in 
Appendix):  
 
Theorem 1. Let }...,,,{ 21 MAAAP =  be a clustering 
configuration of the agents set NA  (where mA  is a 

cluster, Mm ,1∈∀ ): U
M

m
mN A

1=

=A . Construct the 

following matrix NNH ×∈ }1,0{ :  
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Nji ,1, ∈∀ . 
Then P  is uniquely determined by H .  
 
This result shows that the relation mkR ,  defined by 
the agents’ inclusion in the same cluster is uniquely 
assigned to the clustering configuration mkP ,  (no 
other configuration can be described by mkR , ). Thus, 
each crisp relation mkR ,  can be uniquely associated 
to the degree of occurrence assigned to its 
configuration: mk ,α . Together, they can define a so-

called α -sharp-cut of the fuzzy relation kR , by 
using the equality ( = ) instead of inequality (≥ ) in 
the classical definition of α - cut. Therefore, the 
crisp relation mkR , is a α -sharp-cut of kR , defined 
for mk ,α .  
 
Consequently, we can construct an elementary fuzzy 
(binary) relation mk ,R  whose membership matrix is 
expressed as the product between the characteristic 
matrix mkH ,  ,defined by (2), and the degree of 
occurrence mk ,α , that is: mkmk H ,,α . This fuzzy set of 

NN AA ×  is also uniquely associated to mkP , .  

 If Kk ,1∈  is kept fixed, but m  varies in the range 

kM,1 , then a family of fuzzy elementary relations is 
generated: 

kMmmk ,1, }{ ∈R . Naturally, kR  is then 

defined as the fuzzy union:  

 U
kM

m
k,m
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Theorem 2. Let Q  and R  be two binary fuzzy 
relations and QM , respectively RM  their NN ×  
membership matrices. Denote by C  the 
composition: RQC o= . Then RQC MMM o=  
(fuzzy product) and:  

1. If Q  and R  are reflexive relations, C  is also 
reflexive.  

2. If Q  and R  are symmetric relations, C  is 
also symmetric.  

3. If RQ =  and R  is a transitive relation, C  is 
also transitive. 

 
 It is very important to preserve the proximity 
property of relation kR  by composition with itself. 
For more details see [7].   
So far, a bijective map (according to Theorem 1) 
between Kkk ,1}{

∈
= PP  and Kkk ,1}{

∈
= RR , say T , 

was constructed:  

kkT RP =)(  , Kk ,1∈∀                                          (4).
 
 
3.2  The Measure of Fuzziness 
The next step aims to construct a measure of 
fuzziness over the fuzzy relations on NN AA × , that 



will be used to select the “minimally fuzzy” relation 
within the set Kkk ,1}{

∈
= RR .  

 One important class consists of measures that 
evaluate “the fuzziness” of a fuzzy set by taking into 
consideration both the set and its (fuzzy) 
complement. From this large class, we have selected 
the Shannon measure, derived from the generalized 
Shannon’s function:  
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 If the argument of this function is a probability 
distribution, it is referred to as Shannon entropy. If 
the argument is a membership function defining a 
fuzzy set, it is refereed to as (Shannon) fuzzy 
entropy. Denote the fuzzy entropy by µS . Then µS  

is expressed for all Kk ,1∈  by [7]:  
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Moreover, a force driving towards knowledge can be 
determined [4], by computing the gradient of 
Shannon fuzzy entropy. It is interesting to remark 
that the amplitude of this force (its norm), expressed 
as:  

∑∑
= =
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increases very rapidly in the vicinity of any “perfect 
knowledge” point.  
 
 
3.3 The Uncertainty Measure 
Although a unique maximum of Shannon fuzzy 
entropy exists, as proven by (5), we are searching for 
one of its minima. The required measure of 
uncertainty, V , is obtained by composing µS  in 

with T in (4), that is: TSV oµ= . Notice that V  is 
not a measure of fuzziness, because its definition 
domain is the set of source-plans (crisp sets) and not 
the set of fuzzy relations between agents (fuzzy 
sets). But, since T is a bijection, the optimization 
problem (1) is equivalent with:  

 
 ))(minarg(
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where     Kko ,1∈ .
 
 
3.4  Emergence of Holonic Clusters 
Once one pair (

0kP ,
0kR ) has been selected by 

solving the problem (6) (multiple choices could be 
possible, since multiple minima are available), a 
corresponding source-plan should be identified. Two 
choices are possible:   
 
• List all the configurations of 

0kP  (by extracting, 
eventually, those configurations for which the 
occurrence degree vanished in 

0kR ):  

},,,{
00000 ,2,1, kMkkkk PPP K=P .  

 
• Construct other source-plans by using not 

0kP , 

but 
0kR .  

 
 There is a reason for the second option. Usually, 
the initial available information about MAS is so 
vague that it is impossible to construct even 
consistent source-plans. This is the case, for 
example, when all we can set are the degrees of 
occurrence corresponding to clusters created only by 
couples of agents (as we will see in the case study, 
Section 4). But, it is suitable to identify at least a 
source-plan for problem solving.  
 
The main idea in constructing different source-plans 
is to evaluate the α -cuts of 

0kR  and to arrange them 
in decreasing order of their membership.  
 The α -cuts of 

0kR  are the crisp relations α,0kR , 
for degrees of membership ]1,0[∈α . The 
characteristic matrix elements of α,0kR  are defined 
by:  
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=
otherwise,0
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α
α

jiM
jiH kdef
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Nji ,1, ∈∀ .  
 
According to Theorem 1, each matrix α,0kH  in (7) 
generates a unique clustering configuration of agents 



over NA . Thus, two categories of source-plans 
emerge: equivalence or holonic source-plans (when 

0kR  is a similarity relation) and compatibility 

source-plans (when 
0kR  is only a proximity 

relation).  
 
• When the associated fuzzy relation 

0kR  is a 
similarity one, then an interesting property of the 
MAS is revealed: clusters are associated in order 
to form new clusters, as in a “clusters within 
clusters” holonic-like paradigm [2]. Moreover, a 
(unique) similarity relation 

0kQ  can be 
constructed starting from the proximity relation 

0kR , by computing its transitive closure, 
following the procedure described at Step 2. A. 
Thus, the potential holonic structure of MAS can 
be revealed, even when it seems to evolve in a 
non-holonic manner.  

 
• When 

0kR  is only a proximity relation, tolerance 
(compatibility) classes can be constructed as 
collections of eventually overlapping clusters 
(covers). This time, the fact that clusters could 
be overlapping (i.e. one or more agents can 
belong to different clusters simultaneously) 
reveals the capacity of some agents to play 
multiple roles by being involved in several tasks 
at the same time.  

 
 
4 Conclusions 
This paper has proven that fuzzy entropy 
minimization is the mechanism that organizes 
structures into holonic entities. An immediate area of 
application is the automatic reconfiguration of a 
failed structure with recovery of the holonic 
properties. In the context of the holonic enterprise – 
the main applicability is in finding the most 
appropriate collaborative partners in a virtual 
organization as well as recovery if one part of the 
holonic system breaks, by reorganizing the 
distributed system to achieve maximal efficiency.  
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