
Weighted Fuzzy Similarity Classifier in the Łukasiewicz-Structure 
 

KALLE SAASTAMOINEN1, PASI LUUKKA1, VILLE KÖNÖNEN2 
1Department of Information Technology 
Lappeenranta University of Technology 

P.O. Box 20, FIN-53851 
FINLAND 

2Neural Networks Research Centre 
Helsinki University of Technology 
P.O. Box 5400, FIN-02015 HUT 

FINLAND 
 
 

Abstract: - The aim of this paper is to introduce improvements made to a classifier based on the fuzzy 
similarity [1]. Improvements are based on the use of generalized Łukasiewicz-structure and weight 
optimization. We are presenting some new results and a more detailed description of the theoretical 
background and fixing some terminology compared in to our previous work [2]. The main benefits of the 
classifier are its computational efficiency and its strong mathematical background. It is based on many-valued 
logic and it provides semantic information about classification results. We will show that if we choose the 
power value in appropriate manner in the generalized Łukasiewicz-structure and the optimal weights for 
different features, we will see significant enhancements in classification results. 
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1   Introduction 
Same way as notion of fuzzy subset generalizes that 
of the classical subset, the concept of similarity can 
be considered as a many-valued generalization of 
the classical notion of equivalence [3]. Equivalence 
relation is a familiar way to classify similar 
mathematical objects. Fuzzy similarity is an 
equivalence relation that can be used to classify 
multi-valued objects. Because of this, it is suitable 
for classifying problems that are possible to classify 
based on clustering by finding similarities in objects. 
It has been said by Dubois and Prade [4] that the 
evaluation of similarity between two multi-feature 
descriptions of objects may be specially of interest 
in analogical reasoning. If we assume that each 
feature is associated with an attribute domain 
equipped with similarity relation modelling 
approximate equality on this domain, the problem is 
then to aggregate the degrees of similarity between 
the objects pertaining to each feature into a global 
similarity index. This means that the resulting index 
should still have properties like reflexivity, 
symmetry and max-� -transitivity. Moreover, we 
may think of weighted aggregation if we consider 
that we are dealing with a fuzzy set of features 
having different levels of importance. 
     This article handles the suitability of similarity 
measures in Łukasiewicz-structure to the pattern 

recognition problem. A classifier based on the fuzzy 
similarity can be categorized as a supervised, non-
parametric learning method [5]. In this study we 
have derived a classifier based on the generalized 
Łukasiewicz-structure, which is more suitable than 
normal Łukasiewicz-structure for classification 
tasks. Right choice of power value in a generalized 
Łukasiewicz-structure seemed to improve 
classification results remarkable. Also weighting 
similarity measure, as done in the fuzzy similarity 
principle, and finding the optimal weights improved 
classification. Results improved when these two 
classifiers were combined in a right manner. The 
data sets were chosen as diverse as possible so that 
properties of the classifiers would be apparent. Data 
sets were taken from a UCI-Repository of Machine 
Learning Database [6] archive so that they were 
differently distributed and their dimensions varied. 
Classifiers were implemented with TMMATLAB -
software.  
 
 
2 Fuzzy Set Theory in Pattern 
Recognition 
Fuzzy set theory is an active research area, highly 
mathematical in its nature. It can provide a robust 
and consistent foundation for information 
processing, including pattern-formatted information 



processing. It plays at least two roles in the pattern 
recognition. In one role, it serves as an interface 
between the linguistic variables seemingly preferred 
by humans and the quantitative characterizations 
appropriate for machines. In this role, it might also 
serve as a bridge between symbolic processing of 
artificial intelligence and the parallel distributed 
processing approaches favored by adaptive pattern 
recognition. In another role, it emphasizes the 
possibility-distribution interpretation of the concept 
of fuzziness. The value of this role is that it 
legitimizes and provides a meaningful interpretation 
for some distributions that we believe to be useful, 
but that might be difficult to justify on the basis of 
the objective probabilities. The two roles are not 
distinct, but the differences are interesting and worth 
[7]. 
 
3   Use of Fuzzy Set Theory in Pattern 
Recognition 
There are four well-known circumstances in which 
the concepts and techniques of fuzzy set theory are 
uniquely helpful in the practice of pattern 
recognition. One is where a fuzzy set serves as an 
interface between a linguistically formatted feature 
(that is, a nonnumeric, symbolic feature) and 
quantitative measurements. This role of fuzzy sets is 
well understood, and evidence of its use is 
widespread, including in the medical diagnostic 
system, MYCIN [7]. In pattern recognition, there is 
an additional question of how to aggregate the 
evidence represented by an array of membership-
function values. Different approaches are described 
in the literature. We call this interface the first 
circumstance of use of fuzzy set theory. Then the 
second circumstance of use is at the class-
membership level, rather than at the feature level. In 
the crisp case, classification consists 
of relegating a pattern to membership in one of the 
many possible classes. In the fuzzy set approach, the 
class membership of a pattern itself is a fuzzy set, 
and different class indices constitute the support for 
that fuzzy set. A pattern does not necessarily belong 
to just one class. There is a certain degree of 
possibility that the pattern might belong to each one 
of the classes, and membership functions supply 
values for these various possibilities. Nothing much 
is gained if information processing stops at that first 
step of classification, because ultimately one would 
have to decide in favor of one specific class, perhaps 
the one with the largest membership- function value. 
The different possibilities are of value, however, if 
the import of the decision propagates into a network 
of other related decisions. When we have knowledge 

of the other possibilities, we need not discard or 
forget meaningful options and alternatives. Fuzzy 
clustering or the fuzzy ISODATA procedure 
constitutes an instructive example of this second 
circumtance of use. The third circumstance of use  is 
in hand in a case where the membership-function 
values are used to help provide an estimate of 
missing or incomplete knowledge. The fourth 
circumstance of use is similar to that of the second, 
but the context is that of structural rather than 
geometric pattern recognition. In the parsing of a 
structural such as sentence, the fuzzy set approach 
yields values for different possibilities of that 
structure being due to the action of various 
production rules. This circumstance of use has been 
cumbersome and are not generally extensible [7]. 
 
4   Łukasiewicz-Structure in Pattern 
Recognition 
We have chosen to use Łukasiewicz-structure in 
defining memberships of objects. There are two 
good reasons why we have chosen to use it in 
defining memberships of objects. One reason is that 
Łukasiewicz-structure holds the fact that the mean 
of many fuzzy similarities is still a fuzzy similarity 
[8]. Secondly it also has a strong connection to the 
first-order fuzzy logic [9], which is a well studied 
area in the modern mathematics. Next we will 
introduce mathematical background concerning 
fuzzy similarity and generalized Łukasiewicz-
structure. After that we can construct algorithms that 
uses fuzzy similarity in generalized Łukasiewicz-
structure as a base of a fuzzy classification method.  
 
 
4.1 Mathematical Background 
 
Definition 1: (Cartesian Product Space). Let ( ),x y  
be an ordered pair, where x X∈ and y Y∈ , the 
Cartesian product is defined as the set: 
 

( ){ }, : , .X Y x y x X y Y× = ∈ ∈   (1) 
 
Definition 2: (Binary relation). Any subset R ⊆ X × 
Y defines a binary relation between the elements of 
X and Y:  
 

( ){ }, : ( , )R x y X Y R x y holds= ∈ ×   (2) 
 
A relation is a multi-valued correspondence: 
 



{ } ( ) ( ): 0,1 , , .R X Y x y R x y× → →   (3) 
 
Definition 3: A binary relation is a quasi-order if it 
is reflexive and transitive. If it is also anti-symmetric 
then binary relation is partial order. If quasi-order is 
symmetric it is an equivalence relation. 
 
Definition 4: A partially ordered set or poset is a set 
L on which an order relation ≤ has been defined. Of 
course, on a set L various order relations can be 
defined. If in a poset L either x ≤  y or y ≤ x for each 
x , y ∈ L, then L is linear and is called chain. In such 
case the order ≤ is total order and is called linearly 
ordered.  
 
Definition 5: A lattice is a poset L such that for any 
x , y ∈ L, x ∧ y and x ∨ y exist in L. x ∧ y is called 
conjuction (meet, infinum) x ∨ y is called 
disjunction (join, supremum) of x  and y . A lattice 
L is a (countable) complete lattice if ∨ {x | x ∈ X} 
and ∧{x | x ∈ X} exist in L for any (countable) 
subset X ⊆ L. A lattice is often denoted by 

, , ,L ≤ ∧ ∨ .  
 
Remark 1: By setting X = L we see that any 
complete lattice contains the least element 0 and the 
greatest element 1.  
 
Example 1: The unit interval I, for example, is a 
complete lattice under the usual order of x ∨  y = 
max{x,y} and  x ∧  y=min{x,y}. 
 
Definition 6: A lattice is called resituated if it 
contains the greatest element 1, and binary 
operations �  (called multiplication) and → (called 
residuum) such that following conditions hold 
1. �  is associative, commutative and isotone 
2. a�  1 = a for all elements a ∈ L and 
3. for all elements a,b,c ∈ L, a �  b ≤  b if and only 
if a b c≤ → . 
 
Definition 7: Let L be a resituated lattice and X is a 
non-empty set. L – valued binary relation S defined 
in X is a fuzzy similarity if it fulfills the following 
conditions: [3]. 
 
1. : , 1x X S x x∀ ∈ =  

2. , : , ,x y X S x y S y x∀ ∈ =  

3. , , : , , ,x y z X S x y S y z S x z∀ ∈ ≤�  
 

Depending on the choice of the operation �  
(sometimes marked as ∗ ), S is also called a fuzzy 
equivalence relation [10], indistinguishability 
operator [11], fuzzy equality (relation) [12] or 
proximity relation [4].  
 
It is easy to see that letting L be the two element set 
{0,1}, fuzzy similarity coincides with the usual 
equivalence relation.  
 
Definition 8: Łukasiewics norm or Łukasiewics 
conjuction: a � b=max{a+b-1,0}. 
 
This is the t – norm, which means that it preserves 
transitivity w.r.t. the triangular inequality. It is also 
important to realize that for practical applications 
with the unit interval as the underlying lattice L, 
considering only MV-algebras is very restrictive, 
since { }max 1,0a b a b= + −� is the only choice 
for the operation �  up to isomorphism. 
 
We can construct a lattice called normal 
Łukasiewicz-structure or more formally just 
Łukasiewicz-structure: 
 
Definition 9: Łukasiewics-structure: 

{ } { }max 1,0 , min 1,1a b a b a b a b= + − → = − +�

 
If we examine Łukasiewicz-valued fuzzy similarities 

1,...,iS i n=  in a set X we can define a binary 
relation in L by stipulating 

1

1, ,n

i i
S x y S x y

n =
= ∑  for all x , y ∈ X. It is 

easy to prove that this is still a Łukasiewicz-valued 
fuzzy similarity [7]. 
 
Definition 10: Letting L be the real unit interval 
[0,1] endowed with the usual order relation, we may 
construct the following usual residuated lattice: 
Generalized Łukasiewicz-structure: 

max{ 1,0},p ppa b a b= + −�  

{ }min 1, 1p p pa b a b→ = − + , where p is a fixed 

natural number. 
 
Now we are ready to study how to use fuzzy 
similarity for finding similar pairs. We are 
examining a choice situation where features of 
different objects can be expressed in values between 
[0,1]. Let X be the set of m objects. If we know the 
similarity value of the features 1,..., nf f  between 



objects, we can choose the object that has the 
highest total similarity value. The problem is to find 
for object xi similar object xj, where 1 ,i j m≤ ≤ and 
i j≠ . By choosing Łukasiewicz-structure for 
features of the objects we get n fuzzy similarities for 
comparing two objects ( )1 2, :x x  
 

1 2 1 2, ( ) ( ),
if i iS x x x f x f= ↔    (4) 

 
where, x1 , x2 ∈ X and i ∈ {1,…,n}. Because 
Łukasiewicz-structure is chosen for membership of 
objects, we can define the fuzzy similarity as 
follows:  
 

1 2 1 2
1

1, ( ( ) ( )).
n

i i
i

S x x x f x f
n =

= ↔∑   (5) 

 
 It is a very important to realize that this holds only 
in the Łukasiewicz-structure. Moreover, in the 
Łukasiewicz-structure we can give different non-
zero weights (W1,..,Wn) to the different features and 
we get the following formula which again meets the 
definition of the fuzzy similarity: 
 

( )1 21
1 2

1

( ) ( )
,

n
i i ii

n
ii

W x f x f
S x x

W
=

=

↔
= ∑

∑
  (6) 

 
In Łukasiewicz-structure equivalence relation 
a b↔  is defined as { } { }1 max , min ,a b a b− +  or 

equivalently 1 a b− − . The formula of fuzzy 
similarity in such a case is: 
 

1 2 1 2
1

1, 1 | ( ) ( ) |
n

i i
i

S x x x f x f
n =

= − −∑   (7) 

or 
 

1 21
1 2

1

| ( ) ( ) |
, 1

n
i i ii

n
ii

W x f x f
S x x

W
=

=

−
= −∑

∑
  (8) 

 
We have applied a general form of an equivalence 
relation a b↔ to the Łukasiewicz-structure in the 
following way. 
 
Proposition 1: In the generalized Łukasiewicz-
structure equivalence relation can be defined as  

min{ 1 , 1 }p pp p p pa b b a− + − + . 
 

Proof: In the generalized Łukasiewicz-structure 
holds for implication that 

{ }min 1, 1p p pa b a b→ = − + . Using this 

equivalence gets the following form  

{ } { }min 1, 1 min 1, 1p pp p p pa b a b b a↔ = − + ∧ − +

and because always a b≤  or a b> . We get the 

form min{ 1 , 1 }p pp p p pa b a b b a↔ = − + − + . 
 
The formula of the fuzzy similarity gets now the 
following form: 
 

1 2 1 2
1

1, 1 ( ) ( )
n

p pp
i i

i
S x x x f x f

n =
= − −∑   (9) 

 
or 
 

1 21
1 2

1

1 ( ) ( )
,

n p pp
i i ii

n
ii

W x f x f
S x x

W
=

=

− −
=
∑

∑
.      (10) 

 
4.2 Description of Pattern Recognition 
Method in the Algorithmic Form 
 
Method starts with fuzzification of a data set, which 
means, in practice, scaling the data between zero 
and one. After this an ideal vector (e.g. mean vector) 
is calculated for every class. Samples are classified 
so that the fuzzy similarity value between ideal and 
test vector is calculated. The sample can be 
classified to the class with the highest similarity 
value using generalized Łukasiewicz-structure. The 
method gets test element test (dimension dim), 
learning set learn (dimension dim, n different 
classes) and dimension (dim) of the data as its 
parameters. In addition, different weights for 
features can be set in weights and value p can be set 
for generalized Łukasiewicz-structure. The method 
is presented in the pseudo-code form below: 
 
Require: test,learn[1…n],weights,dim 
  Scale test between [0,1] 
  Scale learn between [0,1] 
  For i = 1 to n do 
    Idealvec[i]=IDEAL[learn[i]] 

[ ]
[ ] [ ][ ] [ ]

[ ]∑

∑

=

=
−−

= dim

1

dim

1
1

max
j

j
p pp

jweights

jtestjiidealvecjweights
isim

 

  end for 
Class = arg maxi, maxsim[i]  

 



In the algorithm, IDEAL[i] is the vector that best 
characterizes the class i. In this paper, the IDEAL 
operator is the mean vector of the class. For this 
algorithm, weights can be optimized for example by 
using genetic algorithms in optimization.  
 
In Fig. 1 there is a short description in a form of a 
flowchart for how optimal weights can be found.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Optimization of weights using genetic 
algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. A more detailed flowchart of how weights 

are being optimized with GA. 
 
In Fig. 2 there is a closer description for how it 
would be done by using genetic algorithm.  
 
When the generalized Łukasiewicz-structure is used, 
there is one additional free parameter present, the 
power value of terms used in the similarity measure. 
Genetic algorithm is also used in the optimization of 
this parameter. This process is outviewed in the 
Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Power value optimization in the generalized 
Łukasiewicz-structure 
 
 
5 Empirical Results 
Classification is a good way to test how weighted 
similarity measure works in practice. We tested our 
classifier in three phases. At first, only weights in 
normal Łukasiewicz-structure were optimized. At 
the next phase, normal Łukasiewicz-structure was 
extended to the generalized Łukasiewicz-structure 
and the power value was optimized. At the third 
phase both weights and power value were optimized 
and results were compared to well known KNN-
classifier. 
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5.1 Fuzzy Similarity with Weight 
Optimization in the Task of Classification 
A priori information for determining weights was 
not available for data sets. We used a genetic 
algorithms, because of their robustness, to find the 
optimal weights for our fuzzy similarity classifier. 
Of course other optimizers can be used as well. We 
used three different data sets that were splitted in 
half. One half was used for learning and the other 
half for testing. 
 
Iris-data Set Data set consists of three classes and it 
is four-dimensional. Classification results were 
better with the optimally weighted average 
similarity measure than with the un-weighted 
similarity measure. The same results can be 
achieved either with weight optimization or with 
finding optimal power value. 
 
Thyroid gland-data Set Data consist also of three 
classes and it is five dimensional. Classification 
results got much better with optimal weights, but not 
as good as the classifier in the generalized 
Łukasiewicz-structure with the optimal power value. 
 
Wine recognition-data Set  Data consist of three 
classes and it is 13 dimensional. Here our optimizer 
did not find better weight values than the simple 
average of the features. The reason is that the wine 
recognition data is linear in its nature. In this case, 
no additional advantage can be get by using 
classifier in generalized Łukasiewicz -structure. 
 

Table 1 
Classification results with three different data sets 
and comparison of classification results with fuzzy 

similarity and normal similarity measure 
Class 1 2 3 
Wine data unweighted 100% 89% 100%
Wine data weighted 100% 89% 100%
Iris data unweighted 100% 92% 92% 
Iris data weighted 100% 96% 92% 
Thyroid gland unweighted 100% 67% 67% 
Thyroid gland weighted 100% 82% 80% 
 
 
5.2 Generalized Łukasiewicz-Structure in 
Classification 
We tested the classifier with different power values 
to three different data sets. Different power values 
had different effect in classification. One very 
interesting point was that always power value could 
be found, that managed to classify classes with the 

same or better accuracy than by using just power 
one. 
 
Iris-data Set  From results, it can be seen that the 
best results were achieved with the power of three. 
Conclusion is that Iris-data is a nonlinear data set 
and new properties can be extracted by using 
generalized Łukasiewicz-structure, instead of 
normal Łukasiewicz -structure. 
 
Thyroid gland-data Set Data set was very 
interesting because classification results were much 
better by using  generalized Łukasiewicz -structure 
than by normal Łukasiewicz -structure. Power value 
which gave the best results was near 0.5. 
 
Wine recognition-data Set Here two optimal power 
values was found. With powers 1 and 0.5 very  
similar results was gained. From classification 
results can be seen that both power values managed 
to classify two classes 100% correctly, and 
difference with one class was only one per cent. 
 

Table 2 
Comparison for normal Łukasiewicz -structure and 

generalized Łukasiewicz -structure with optimal 
power 

Class 1 2 3 
Wine data (power 1) 100% 89% 100%
Wine data (power 0.5) 100% 90% 100%
Iris data (power 1) 100% 92% 92% 
Iris data (power 3) 100% 96% 92% 
Thyroid gland (power 1) 100% 67% 67% 
Thyroid gland (power 0.5) 100% 94% 80% 

 
5.3 Fuzzy Similarity with Generalized 
Łukasiewicz -Structure in Classification 
After previous experiments we decided to test how 
our fuzzy similarity classifier would work in 
generalized Łukasiewicz-structure. The same data 
sets were used. Results from normal similarity 
classifier was also included in table 3 for 
comparison purposes. Here also results were 
compared to nearest neighbor classifier. 
 
Iris-data Set New information was not found by 
classifying with fuzzy similarity in generalized 
Łukasiewicz-structure compared to normal 
similarity. It managed to get the same results as 
weighted classifier or classifier with the optimal 
power value. Three samples from the data set was 
not classified correctly. In table 3 1-NN classifiers 
results are also included. As seen from table, third 
class was classified here better with similarity 



classifier than nearest neighbor classifier. In first 
and second class, results were same. 
 
Thyroid gland-data Set Here results got better. We 
managed to classify two classes 100 per cent 
correctly. Also results from the third class improved. 
This data set clearly shows, that there are cases 
when combining these two methods brings better 
results compared to using only one of them. Also 
here the results with similarity classifier compared 
to 1-NN classifier were much better. 
 
Wine recognition-data Set  Here we managed to 
get results that one of previous methods had already 
found.  Weighting and choosing a correct power 
value, both managed to find the same new properties 
in data. New properties was not found by combining 
these two methods. Compared to nearest neighbor 
classifier results were much better. 
 

Table 3 
Classification results of fuzzy similarity in general 

Łukasiewicz -structure 
Class 1 2 3 
Wine data (normal) 100% 89% 100%
Wine data (generalized) 100% 90% 100%
Wine data (1-NN) 83% 85% 46% 
Iris data (normal) 100% 92% 92% 
Iris data (generalized) 100% 96% 92% 
Iris data (1-NN) 100% 96% 88% 
Thyroid gland (normal) 100% 67% 67% 
Thyroid gland (generalized) 100% 100% 83% 
Thyroid gland (1-NN) 97% 89% 69% 
 
6 Conclusions 
Study of fuzzy similarity classification has been 
made. Also comparison to well-known nearest 
neighbor classifier was done and conclusions can be 
drawn.  In this study we have shown that the fuzzy 
similarity is very useful in classification and it better 
results can be achieved than with traditional nearest 
neighbor classifier. Fuzzy similarity has clearly 
something new to offer in classification compared to 
traditional similarity measure. Another interesting 
result was that normal Łukasiewicz-structure is not 
ideal for similarity measure in classification but 
better results can be achieved by using generalized 
Łukasiewicz-structure. Generalized Łukasiewicz -
structure should be used instead of normal 
Łukasiewicz-structure, if the boundaries are not 
simple and clear. Fuzzy similarity classifier 
managed to achieve best results by using generalized 
Łukasiewicz-structure. It always managed to get at 
least the same results as in normal Łukasiewicz-

structure. The major advantages of the method is 
that it provides semantic information about the 
classification task by allowing partial membership 
of the class. 
 
Interesting point to study next is to develop an 
algorithm that calculated similarities to its 
neighborhood. Class of the sample is based on this 
information. Very interesting from mathematical 
point of view is to study relations between different 
metrics and similarity measures. In that way it might 
be possible to study connections between fuzzy 
similarity classifier and self-organizing maps. 
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