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Abstract: - This paper presents the evaluation and fine-tuning of different values of genetic operators in 
the process of optimizing the designs of the integrated circuits. Due to the increasing usage of the 
evolutionary optimization in the area of the integrated circuit design, there is a need to find a proper 
combination of genetic operators parameters’ value. We investigated the interdependence of various 
values of these parameters and their influence on the quality of the final solution. Generally, the quality of 
solution is influenced by parameters and the input design. Therefore, it is important to perform this kind of 
evaluation each time we are searching the optimal values of the genetic operators for some new problem 
to be solved. 
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1   Introduction 
The area of evolutionary computation is very 
popular but there is always a problem of defining a 
proper value of parameters of genetic operators. A 
standard genetic algorithm uses four different 
parameters that have to be defined in advance, 
before the algorithm is actually used. These are: 
the number of generations, the size of the 
population, the probability of crossover, and the 
probability of mutation [1, 5]. 
     There are some proposals for setting of these 
parameters according to the problem size and 
according to the area of the problem. But these 
proposals are not always applicable or are not 
suitable for all problems. 
     To find some dependencies between the 
parameters and the problem that has to be solved, 
we made the evaluation. We study an evolutionary 
approach that automatically generates circuit 
designs. We managed to point to some interesting 
dependencies between parameters themselves and 
to determine what values should be used in our 
optimizations when working with evolutionary-
oriented algorithms. 
     The organization of the paper is as follows: 
Section 2 presents some details of test 
environment and evolutionary allocation-based 
scheduling algorithm; Section 3 describes the 
testbench; while Section 4 presents the results of 
evaluation. 

2   ABS algorithm 
To find the optimal values of the parameters of the 
genetic operators we used Allocation-based 
Scheduling (ABS) algorithm [5]. The ABS is 
evolutionary-oriented scheduling algorithm for use 
in high-level synthesis of the integrated circuit. 
The algorithm is capable of producing an optimal 
solution according to scheduled and allocated 
operations. 
     To be able to produce the optimal solution it 
uses the following cost function 
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 (Eq. 1) 

 
which ensures the proper estimation and 
evaluation of the optimality. Here, FUi is the 
largest number of a unit of type i, used in any of 
the control steps, Reg is the largest number of the 
variables, needed in any control step, Bus is the 
largest number of transitions (inputs/outputs 
into/from functional units) in any control step, and 
T is time needed to finish all scheduled operations. 
     According to different kinds of multi-objective 
cost functions and their effectiveness [2], the 



distance function in multi-dimensional space was 
used, where each coordinate presents one of the 
criterions. These criterions are weighted (wFU1, ... 
wFUn, wReg, wBus, wT) to ensure compatibility of 
parameters. 
     The goal of the ABS algorithm is to optimize 
the design of the integrated circuit. Through the 
processes of scheduling and allocation, the circuit 
could be implemented with the optimal number of 
all resources (functional, storage and connection 
units). 
 
 
3   Elliptic filter 
In the evaluation process of the ABS algorithm the 
fifth-order elliptic filter was used [3], which is 
well known benchmark in the area of the 
automatic circuit design. 
     Data-flow graph (DFG) of the elliptic filter 
consists of 34 operations with only two operation 
types (adders and multipliers). This ensures the 
possibility of scheduling with different number of 
functional units and other resources. The DFG of 
the elliptic filter is presented in Fig. 1. 
 

4   Evaluation 
Considering 3125 different schedules of the 

elliptic filter with the ABS algorithm and 625 
different combinations of parameters, we 
compared the results according to their cost 
function (Eq. 1). The weights used by the 
algorithm were: 

- wFU1 = 6.3; 
- wFU2 = 7.1; 
- wReg = 2.9; 
- wBus = 1.1 and 
- wT = 50. 

To ensure most solutions being time-constrained 
(executed in shortest possible time) the weight wT 
was set to extremely high value. 
     As presented in Fig. 2 and Tab. 1, we can see 
that solutions with high quality are mostly 
obtained by the following values of parameters: 

- number of generations is 100; 
- population size is 10; 
- probability of crossover is 0.5 and 
- probability of mutation is 0.01. 

The values of parameters in this combination are 
named as optimal values. 
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Fig. 1. Fifth-order elliptic filter DFG 
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Fig. 2. The share of different parameters’ values according to the influence on qualities of solutions:  
a) number of generations, b) population size, c) probability of crossover, d) probability of mutation 

 
 
 
 
a) number of generations 

quality 50 75 100 125 150
high 13.1 22.4 29.0 16.8 18.7
good 24.0 22.4 16.5 19.3 17.4
bad 16.6 15.4 19.4 23.4 25.1
low 21.7 8.7 30.4 17.4 21.7 

b) population size 
quality 10 20 30 40 50
high 47.7 23.4 12.1 10.3 6.5
good 20.2 22.1 20.9 17.8 18.7
bad 5.1 15.4 24.6 26.3 28.6
low 0.0 8.7 8.7 47.8 34.8 

  
 

  

c) probability of crossover 
quality 0.5 0.6 0.7 0.8 0.9
high 28.0 21.5 15.0 17.8 17.8
good 21.5 19.9 17.4 24.3 16.5
bad 14.3 20.0 28.0 13.7 24.0
low 4.3 13.0 17.4 17.4 47.8 

d) probability of mutation 
quality 0.01 0.03 0.05 0.07 0.09
high 35.5 26.2 15.9 13.1 9.3
good 18.1 17.8 22.4 19.3 22.1
bad 13.7 20.0 19.4 24.6 22.3
low 21.7 21.7 8.7 26.1 21.7 

 
Table 1. 
The share (in %) of parameters’ influence on the quality of solutions:  
a) number of generations, b) population size, c) probability of crossover, d) probability of mutation 
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Fig. 3. The range and average value of parameters according to different qualities of solution 
 
     Fig. 3 presents the range of the average values 
of parameters according to different qualities of 
solutions. It can be seen that on average number of 
generations does not influence the quality 
significantly since there is always pretty similar 
quality, only the schedule time increases with the 
increasing number of generations. Next, smaller 
average population sizes (around 20) give much 
better solutions than bigger sizes. Again there is 
also the increase of schedule time according to 
increasing population size. 

     On the other side, there are two parameters that 
influence the variability of solutions. As presented, 
better solutions can be obtained when probability 
of crossover is 0.65 and probability of mutation is 
0.035. 
     In Fig. 4 generations and population size are 
fixed to their optimal value and the 
interdependence of probabilities is checked, while 
in Fig. 5 the probabilities are fixed and the 
interdependence of generations and population 
size is revealed. 
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Fig. 4. Interdependence between crossover and mutation probabilities. 
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Fig. 5. Interdependence between number of generations and population size. 

 



     The cost of solution obtained by optimal values 
is not the best in the range of over 3000 solutions 
but is in top 10% of combinations ranked 
according to the cost function value. Despite the 
difference between the optimal-values result and 
the best results (as seen in Fig. 4 and Fig. 5) there 
is a difference in costs less than 2% of the cost 
function value.  
 
 
5   Conclusion 
As presented there is a lot of work to fine-tune the 
proper values of the genetic operators. To achieve 
compatible results in optimization of the fifth-
order elliptic filter design it is appropriate to use 
the values obtained by our investigation. 
     Generally, the quality of solution is always 
influenced by parameters and the input DFG. 
Therefore, it is important to perform this kind of 
evaluation each time we are in search of the 
optimal values of the genetic operators for some 
new problem to be solved. 
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