
Plausible Neural Networks

YUAN YAN CHEN
Center for Army Analysis

6001 Goethals Road
Fort Belvoir, VA 22060-5230

 USA

Abstract – Most literature that attempts to explain the neural network computation and the
uncertainty of inference based on the probability measure; e.g. see [2], [10], [11], [12] and [13].
This paper discusses a new neural network model, that uses a statistical inference model proposed
in [5] and [6]; under such a model the interpretation of neural networking is both possibilistic and
probabilistic in nature, and it is referred to as PLANN.

Key-Words: possibility measure, mutual information, likelihood function, neural networks, E-M
algorithm, unsupervised learning, supervised learning.

1 Introduction
In human reasoning, there are two modes of
thinking. One is expectation and the other is
likelihood. Expectation is for planing or
predicting the true state of the future,
likelihood is for judging the truth of a
current state. These two modes of thinking
interact with each other; for example we
need to recognize our environment in order
to make a prediction. A statistical inference
model that has the interaction of these two
modes of thinking, which is a hybrid of
probability and possibility measures, was
discussed in [5]. The inference is based on
the principle of inverse inference, which can
be stated as follows

Given the evidence, the more probable a
hypothesis can produce such evidence the
more likely it to be true.

The statistical inference based on possibility
measure for parameter estimation and
hypothesis testing has several interesting
properties. Mathematically it is parallel to
Bayesian inference, but in application it is
close to frequentist inference. In the
parametric case it is equivalent to the
likelihood ratio test, and in the
nonparametric case it is equivalent to
empirical likelihood inference [14].

In machine learning the consideration of model
is often necessary, since the inverse problem is ill
posed without the model selection. The
relationship of prior, data, and model under
Bayesian inference is

P (model | data, prior) = P (data | model, prior)
P (model | prior) / Σ model P (data | model, prior)
P (model | prior).

If we use the possibility measure, there is a
universal uninformative prior, and the computation
can be simplified as

Pos (model | data) = P (data | model) / sup model P
(data | model).

The goal of machine learning is judging
which model is more likely to be true. This
can be achieved by fuzzy ranking of the
possibility measure. The additive property of
probability measure is unnecessary.

The relationships between statistical
inferences and neural networks in machine
learning and pattern recognition have
attracted a lot of research attention. Previous
connections were discussed in terms of the
Bayesian inference, e.g. [11], [12] and [13].
Bayesian neural networks require the
assignment of prior belief on the weight
distributions. Unfortunately, this makes the

computation of large-scale networks almost
impossible.

2 PLANN Model and Learning
Algorithm
For each variable X there are two distinct
meanings. One is P(X), which considers the
population distribution of X, and the other is
Pr(X), which is a random sample based on
the population. If the population P(X) is
unknown, it can be considered as a fuzzy
variable or a fuzzy function, which is
referred to as stationary variable or
stationary process in [5]. Based on sample
statistics we can have a likelihood estimate
of P(X). The advantage of using the
possibility measure on a population is that it
has a universal vacuous prior, thus the prior
does not need to be considered as it is in the
Bayesian inference.
 The statistical inference model of
discussed in [5] is given as follows

l (θx) = p (xθ) / sup θ p (xθ) (1)

where l (θx) is a likelihood function or a
possibility function. The likelihood function
can be estimated from the data, and the
estimates can be used for prediction. If we
alternate the two procedures, we have the E-
M algorithm, which is used extensively for
machine learning. Thus, this inference
model provides another theoretical
justification for the E-M algorithm.
 Let be X be a neuron, which is a binary
variable. At any given time t, Xt = 1 is when
the neuron fires, and Xt = 0 is when the
neuron is at rest. For simplicity we drop the
subscript t. The weight connection between
neuron X and neuron Y is given as follows

ω12 = log (P(X =1, Y=1)/P(X=1)P(Y=1)) (2)

which contain the firing history or mutual
information content of two neurons.
Equation (1) has a Hebbian-type
interpretation, the synapse weight increase
in strength by coincidence of presynaptic
and postsynaptic signals.

 Linking the neuron’s synapse weight to
information theory has several advantages.
The explanation of knowledge and synapse
weight is transparent. Information and
energy are exchangeable. And neuron
learning becomes statistical inference.
From a statistical inference point of view,
neuron activity for a pair of connected
neurons is Bernoulli’s trial for two
dependent random variables. Bernoulli trials
of a single random variable are discussed in
[5].
 Let (X, Y) be bivariate Bernoulli random
variable with parameters θ1, θ2, θ12, where θ1
= P (X=1), θ2 = P (Y=1) and θ12 = P (X=1,
Y=1). The joint likelihood function of the
parameters is

l (θ1, θ2, θ12x, y) = θ12

xy(θ1-θ12)x(1-y)(θ2-θ12)(1-

x)y(1-θ1-θ2+θ12) (1-x)(1-y) /sup θ1θ2θ12 θ12
xy(θ1-

θ12)x(1-y)(θ2-θ12)(1-x)y(1-θ1-θ2+θ12) (1-x)(1-y) (3)

Let g(θ1, θ2, θ12) = log(θ12 / θ1θ2). The
likelihood function of ω12 given data x, y is

l (ω12x, y) = sup θ1θ2θ12 ω12 = g (θ1,θ2,θ12)

 l (θ1, θ2,

θ12x, y) (4)

This is based on the extension principle of
the fuzzy set theory (e.g. [8]). When a
synapses with a memory of x, y receives a
new information xt, yt, the weight is updated
by the likelihood rule [5],

l (ω12x, y, xt, yt) = l(ω12x, y) l(ω12 xt, yt)
/ sup

ω12
l (ω12x, y) l (ω12 xt, yt). (5)

 The objective of learning is to find the
optimum parameter that maximized the log
likelihood function, which is the same as the
natural gradient descent learning, e.g. [15],
however the computation is different.
 A confidence measure for ω12 is
represented by the α–cut set or 1-α
likelihood interval [6]. This is needed only if
the size of the training sample is small. If the
sample size is large enough the maximum

likelihood estimate of ω12 will be sufficient,
which can be computed from the maximum
likelihood estimate of θ1, θ2 and θ12. Since
θ̂ 1 = Σi xi/n, θ̂ 2 = Σi yi/n, θ̂ 12 = Σi xi yi/n,
we have

ϖ̂ 12 = log (nΣi xi yi / Σi xi Σi yi), (6)

In [5] the parameter is considered a
stationary variable. If the input patterns
change with time, the weight of the network
is nonstationary, a dynamical system will
emerge.
 In the Bernoulli trial, the knowledge of
the experiment is stored in the parameter,
the more data information the crispier the
likelihood function. Similarly the
knowledge/memory of two neurons are
stored in the synapse weight. If the synapse
weight between two neurons increases then
the entropy decreases. This is the principle
of energy and information exchange.
 The learning rule based on mutual
information is consistent with the Hopfield
learning rule, which is discussed in [11].
However, there is no weight connection
between two neurons if they fire
independently; and the less frequently a
neuron fires the higher the learning rate.
 Let Xi be the neurons that fire to Xj, The
activation is given by integration and fire
model

Xj = s (∑i ωij xi), (7)

where s is a signal function.
 A plausible neural network (PLANN) is
a network with the weight connection given
by (2) and activation function given by (7).
Having symmetric weight connections
ensures a stable state of the network.

If Pl (Xj =1x, ω) = s (∑i ωij xi) is a
plausibility function, which can be a
probability or possibility function depending
on the normalization, based on inference
discussed in [5], we have

Pl (Xj =1x) = sup ω Pl (Xj =1x, ω) l (ωx)
= s (∑i ϖ̂ ij xi) (8)

Thus, it justifies the maximum likelihood
estimation for weight parameter, while
under Bayesian network maximum
aposterior belief of weight parameter is
simply an approximation.

3 PLANN Architecture and
Inference
PLANN is a recurrent network, technically
it can have full interconnections as the
design of Boltzmann machine [1]. However,
a layer network is more efficient in energy
conservation, which is favored by nature in
organization.
 A classification model FASE based on
the possibility measure is discussed in [7].
FASE is a single layer neural network, with
each attribute neurons connected to class
neurons. The attribute neuron statistically
independent of class neuron has no weight
connection; it does not contribute any
evidence. The class neurons receive more
information from the attribute neurons are
more likely to fire, this explains the
principle of inverse inference. The FASE
model handles the dependency of attribute
information by the t-norm operation. The
classification based on possibility measure
has another advantage that it is not restricted
to mutually exclusive categories. The class
can be overlapping or in hierarchy order; for
example a document can be labeled as
computer program and C++ simultaneously
in a training sample.

FASE model is mathematically
attractive, but the selection of t-norm is still
a question. An alternative approach is
employing hidden neurons to perform
competitive learning, to circumvent the
difficulty of conditional dependence.
 Unsupervised learning is designed as a
network of input neurons connected to
hidden competitive neurons, which can have
multiple levels to provide hierarchy
clustering. Although the classification is
usually considered as supervised learning,
we use the same design as unsupervised
learning in the PLANN network. The input

pattern contains class labels in additional to
input pattern; if some class labels are
missing then it is semi-supervised learning.
The hidden layer combines the information
of class and attribute neurons. The posterior
belief of the class variable can be estimated
from the network. The information of
attribute neurons feed forward to the
competitive hidden neurons, and the wining
neurons feed back to the class neurons. This
is similar to the wake-sleep algorithm of [9],
where each hidden neuron represents a
cluster in the generative model.
 Let Yj be the competitive hidden neuron
connected to the input neurons Xi . From
equation (2) the active potential of the
hidden neurons yj received from input
pattern x1, x2,… xn is

Σi ωij xi = Σi ln(p(xiyj)) – Σi ln (p(xi)). (9)

The second term of (9) can be removed by
either probability or possibility
normalization. However, the possibility
normalization provides the advantage of
being less sensitive to the number of hidden
neurons. If the normalized action potential
of a neuron is larger than threshold, i.e.

s (Σi ωij xi) > 1 – α, (10)

then it fires, where s(tj) = exp(tj)/supj exp (tj).
The threshold can be considered as a

confidence level that an input pattern
matches with the stored pattern of latent
variable or hypothesis. This is similar to the
vigilance parameter in ART network [4].
After training the cluster will form, since it
is the stable state of the competitive
network. The stable state is also similar to
the resonance of ART.

4 Experiments of PLANN
In the simulation of PLANN, we use the
learning algorithm based on the maximum
likelihood estimation given in (6) and
additive activation function. The uncertainty
measure of the weights is not considered.

If the variable is discrete with k
categories, it can be encoded by X= (X1,

X2,…, Xk). Each neuron is an indicator
function of a particular data value. A null
vector represents a missing data value. If the
variable is continuous, based on the
inference discussed in [6], there is a
universal nonparametric functional estimate;
however the computation of likelihood
function is too intensive. For simulation we
let each neuron X1, X2,…, Xk be sensitive to
a range of values, that correspond to
overlapping bins or kernel function (e.g.
radial basis function) units. When a data x is
observed, several neurons sensitive to the
value will fire. Experimental results show
that the synaptic weights, trained with the
learning rule, form a Mexican hat function
as in the feature map, if the inhibitory
weights at a distance were disregarded.
 The unsupervised learning algorithm is
given as follows:

1. Fire the hidden neurons randomly.
2. M- step: estimate the weight

connections of input neurons with
hidden neurons.

3. E-step: compute the active potentials of
hidden neurons and normalize into [0,1].
If the action potential of a neuron is
larger than threshold, 1 -α, then it fires.

4. Update the synaptic weight if the firing
of the hidden neuron changes.

5. Repeat the procedure until the network
stabilizes.

The M-step is executed locally, with the

synaptic weight being updated only when
the activity of the neuron changes; thus, it is
faster than many other algorithms. This
learning algorithm is also similar to that of
the Boltzmann machine [1], where the
visible neurons are clamped, and the hidden
neurons run freely until stabilized. The
number of hidden neurons in the network is
flexible as long as it is sufficient. Some of
them lose the competition and have no
weight; some of them represent the same
pattern.

The PLANN algorithm has been tested
on the datasets of UCI machine learning
repository [3] for supervised and
unsupervised learning. It can extract multi-

dimensional pattern such as tic-tac-toe and
led data. The weights of the trained network
can be easily transformed into uncertainty
measure. We demonstrate this feature by
using the zoo dataset.

Table 1 shows the network output of the
PLANN unsupervised learning algorithm for
the zoo data (the class type in the data is not
used). It is trained with fifteen hidden
neurons. After training ten clusters are
formed. Table 1(a) shows the output
probabilities, which are transformed from
the weights of the network. Simple inference

rules can be derived from the table. Table
1(b) gives the list of animals in the clusters.
We see that the networks find the distinctive
patterns, regardless of the training sample
size. The normalized action potential after
training can provide the possibility measure
of the hidden neurons, which can be
interpreted as the fuzzy membership of data
input belonging to a cluster. They are
summarized in table 1(c), for example mink
belongs to cluster C5, but it also belongs to
cluster C3 with a fuzzy membership of .96.

Table 1. Experimental results of PLANN algorithm for zoo database

(a) Conditional probability of attributes given the cluster

 hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins no legs 2 legs 4 legs 5 or

more
tail domestic catsize

C1 1 0 0 1 0.4 0 0 1 1 1 0 0 0 1 0 0 0 0.2 0.6
C2 0 0 1 0 0 1 0.69 1 1 0 0.08 1 1 0 0 0 1 0 0
C3 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0.9 0.23 0.77
C4 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1
C5 0.67 0 0 1 0 1 1 0.83 1 1 0 0.67 0.5 0 0 0 0.83 0 1
C6 0 1 1 0 0.8 0 0 0 1 1 0 0 0 1 0 0 1 0.15 0
C7 0 0 1 0 0 0.86 1 0 0 0 0.14 0 0.29 0 0 0.57 0 0 0
C8 0 0 1 0 0 0.75 0.75 1 1 1 0 0 0 0 1 0 0 0 0
C9 0 0 0.67 0 0 0 1 1 1 0 0.67 0 1 0 0 0 1 0 0
C10 0 0 0.91 0 0.55 0 0 0 0 1 0.27 0 0 0 0 0.82 0 0 0

(b) List of the animals in the clusters

C1 fruitbat girl gorilla vampire wallaby
C2 bass carp catfish chub dogfish haddock herring pike piranha seahorse sole stingray tuna
C3 aardvark antelope bear boar buffalo calf cavy cheetah deer elephant giraffe goat hamster

 hare leopard lion lynx mole mongoose opossum oryx polecat pony puma pussycat raccoon
 reindeer squirrel vole wolf

C4 tortoise
C5 dolphin mink platypus porpoise seal sealion
C6 chicken crow dove duck flamingo gull hawk kiwi lark ostrich parakeet penguin pheasant

 rhea skimmer skua sparrow swan vulture wren
C7 clam crab crayfish lobster octopus seawasp starfish
C8 frog newt toad tuatara
C9 pitviper seasnake slowworm
C10 flea gnat honeybee housefly ladybug moth scorpion slug termite wasp worm

(c) Fuzzy membership of the animals belonging to the clusters*

C3 mink (.96)
C4 platypus (.83)
C7 slug (.83) worm (.83) scorpion (.76)

*possibility or fuzzy membership (>.75).

5 Discussion
Our central hypothesis is that the parameter
or synaptic weight of neural networks can be
estimated by using the possibility measure.
The advantage of such a model is that there
is no prior assumption for the weight as in
the Bayesian inference, and the E-M
algorithm can be computed efficiently
without gradient descent approximation. A
hardware device can be designed to
implement the weight update based on
equation (5), and a very fast online learning
neural network can be created.

From the neural computational
perspective, categories are formed through
the competition of neuron activities.
Mathematically this is a relative measure;
thus it is more straightforward to link the
inference of classification to the possibility
measure than to the probability measure.
The connection of statistical dependency
and weight configuration in a neural
network is also very important. It gives a
clearer interpretation of how the networks
perform logical and plausible inference, and
how the networks distinguish pattern and
noise.

References:
[1] Ackley, D. H., Hinton, G.E, and T. J.

Sejnowski (1985). A learning algorithm
for Boltzmann machine, Cognitive Sci. 9
(1985) 147-169.

[2] Baum, E.B. and Wilczek F. (1988),
Supervised learning of probability
distributions by neural networks. In
Neural Information processing Systems,
ed. Anderson, D. Z. 52-61. New York:
American Institute of Physics.

[3] Blake, C. L. and Merz, C. J. (1998). UCI
Repository of machine learning databases.
Department of Information and Computer
Science, University of California, Irvine,
CA.[http://www.ics.uci.edu/~mlearn/ML
Repository.html].

[4] Carpenter, G. and Grossberg, S. (1988).
The ART of adaptive pattern recognition
by a self-organizing neural network. IEEE
Computer, 21 (3), 77-88.

[5] Chen, Y.Y (1993). Bernoulli trials: from
a fuzzy measure point of view. J. Math.
Anal. Appl. 175, 392-404.

[6] Chen, Y. Y. (1995). Statistical inference
based on the possibility and belief
measures. Trans. Amer. Math. Soc. 347,
1855-1863.

[7] Chen, Y. Y. (2000). Fuzzy analysis of
statistical inference. IEEE Trans. Fuzzy
Systems. 8, 796-799.

[8] Dubois D. and Prade H. (1980) Fuzzy
Sets and Systems: Theory and
Applications. Academic Press, London.

[9] Hinton, G. E., Dayton, P., Frey, B. J.
and Neal, R. M. (1995) The wake-sleep
algorithm for unsupervised neural
networks, Science, 268 1158-1161.

[10] Hopfield, J. J. (1987). Learning
algorithm and probability distributions in
feed-forward and feed-back networks.
Proceeding of the National Academy of
Science, USA 8429-8433.

[11] Kononenko I. (1989) Bayesian neural
networks. Biological Cybernetics 61:361-
370.

[12] Lansner A. and Ekeberg O. (1989). A
one-layer feedback, artificial neural
network with a Bayesian Learning rule.
Int. J. Neural Systems 1 77-87.

[13] MacKay D. J. C. (1992). A practical
Bayesian framework for backpropagation
networks. Neural Computation 4, 448-
472.

[14] Owen A. B. (2001). Empirical
Likelihood. Chapman & Hall CRC Press.

[15] Park H., Amari S., Fukumizu, K.
(2000). Adaptive natural gradient learning
algorithms for various stochastic models.
Neural Network 13 755-764.

