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Abstract – Most literature that attempts to explain the neural network computation and the 
uncertainty of inference based on the probability measure; e.g. see [2], [10], [11], [12] and [13].  
This paper discusses a new neural network model, that uses a statistical inference model proposed 
in [5] and [6]; under such a model the interpretation of neural networking is both possibilistic and 
probabilistic in nature, and it is referred to as PLANN. 
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1 Introduction 
In human reasoning, there are two modes of 
thinking. One is expectation and the other is 
likelihood. Expectation is for planing or 
predicting the true state of the future, 
likelihood is for judging the truth of a 
current state. These two modes of thinking 
interact with each other; for example we 
need to recognize our environment in order 
to make a prediction. A statistical inference 
model that has the interaction of these two 
modes of thinking, which is a hybrid of 
probability and possibility measures, was 
discussed in [5]. The inference is based on 
the principle of inverse inference, which can 
be stated as follows  
 
Given the evidence, the more probable a 
hypothesis can produce such evidence the 
more likely it to be true. 
 
The statistical inference based on possibility 
measure for parameter estimation and 
hypothesis testing has several interesting 
properties. Mathematically it is parallel to 
Bayesian inference, but in application it is 
close to frequentist inference. In the 
parametric case it is equivalent to the 
likelihood ratio test, and in the 
nonparametric case it is equivalent to 
empirical likelihood inference [14]. 

In machine learning the consideration of model 
is often necessary, since the inverse problem is ill 
posed without the model selection. The 
relationship of prior, data, and model under 
Bayesian inference is  
 
P (model | data, prior) = P (data | model, prior)    
P (model | prior) / Σ model P (data | model, prior)    
P (model | prior). 
 

If we use the possibility measure, there is a 
universal uninformative prior, and the computation 
can be simplified as 
 
Pos  (model | data) = P (data | model) / sup model P 
(data | model).   
  
The goal of machine learning is judging 
which model is more likely to be true. This 
can be achieved by fuzzy ranking of the 
possibility measure. The additive property of 
probability measure is unnecessary. 

The relationships between statistical 
inferences and neural networks in machine 
learning and pattern recognition have 
attracted a lot of research attention. Previous 
connections were discussed in terms of the 
Bayesian inference, e.g. [11], [12] and [13]. 
Bayesian neural networks require the 
assignment of prior belief on the weight 
distributions. Unfortunately, this makes the 



computation of large-scale networks almost 
impossible.  
 
2 PLANN Model and Learning 
Algorithm  
For each variable X there are two distinct 
meanings. One is P(X), which considers the 
population distribution of X, and the other is 
Pr(X), which is a random sample based on 
the population. If the population P(X) is 
unknown, it can be considered as a fuzzy 
variable or a fuzzy function, which is 
referred to as stationary variable or 
stationary process in [5]. Based on sample 
statistics we can have a likelihood estimate 
of P(X). The advantage of using the 
possibility measure on a population is that it 
has a universal vacuous prior, thus the prior 
does not need to be considered as it is in the 
Bayesian inference.  
 The statistical inference model of 
discussed in [5] is given as follows 
 
l (θx) = p (xθ) / sup θ p (xθ)   (1) 

  
where l (θx) is a likelihood function or a  
possibility function. The likelihood function 
can be estimated from the data, and the 
estimates can be used for prediction. If we 
alternate the two procedures, we have the E-
M algorithm, which is used extensively for 
machine learning. Thus, this inference 
model provides another theoretical 
justification for the E-M algorithm.  
 Let be X be a neuron, which is a binary 
variable. At any given time t, Xt = 1 is when 
the neuron fires, and Xt = 0 is when the 
neuron is at rest.  For simplicity we drop the 
subscript t.  The weight connection between 
neuron X and neuron Y is given as follows  
 
ω12 = log (P(X =1, Y=1)/P(X=1)P(Y=1)) (2) 
 
which contain the firing history or mutual 
information content of two neurons. 
Equation (1) has a Hebbian-type 
interpretation, the synapse weight increase 
in strength by coincidence of presynaptic 
and postsynaptic signals.   

 Linking the neuron’s synapse weight to 
information theory has several advantages. 
The explanation of knowledge and synapse 
weight is transparent. Information and 
energy are exchangeable. And neuron 
learning becomes statistical inference.  
From a statistical inference point of view, 
neuron activity for a pair of connected 
neurons is Bernoulli’s trial for two 
dependent random variables. Bernoulli trials 
of a single random variable are discussed in 
[5].   
 Let (X, Y) be bivariate Bernoulli random 
variable with parameters θ1, θ2, θ12, where θ1 
= P (X=1), θ2 = P (Y=1) and θ12 = P (X=1, 
Y=1). The joint likelihood function of the 
parameters is 
 
l (θ1, θ2, θ12x, y) = θ12

xy(θ1-θ12)x(1-y)(θ2-θ12)(1-

x)y(1-θ1-θ2+θ12) (1-x)(1-y) /sup θ1θ2θ12  θ12
xy(θ1-

θ12)x(1-y)(θ2-θ12)(1-x)y(1-θ1-θ2+θ12) (1-x)(1-y)  (3) 
 
 
Let g(θ1, θ2, θ12) = log(θ12 / θ1θ2). The 
likelihood function of ω12 given data x, y is 
 
l (ω12x, y) = sup θ1θ2θ12 ω12 = g (θ1,θ2,θ12)

 l (θ1, θ2, 

θ12x, y)            (4) 
 
 

This is based on the extension principle of 
the fuzzy set theory (e.g. [8]). When a 
synapses with a memory of x, y receives a 
new information xt, yt, the weight is updated 
by the likelihood rule [5], 
 
l (ω12x, y, xt, yt) = l(ω12x, y) l(ω12 xt, yt) 
/ sup

ω12
l (ω12x, y) l (ω12 xt, yt).      (5) 

 
 The objective of learning is to find the 
optimum parameter that maximized the log 
likelihood function, which is the same as the 
natural gradient descent learning, e.g. [15], 
however the computation is different.  
 A confidence measure for ω12 is 
represented by the α–cut set or 1-α 
likelihood interval [6]. This is needed only if 
the size of the training sample is small. If the 
sample size is large enough the maximum 



likelihood estimate of ω12 will be sufficient, 
which can be computed from the maximum 
likelihood estimate of θ1, θ2 and θ12. Since 
θ̂ 1 = Σi xi/n, θ̂ 2 = Σi yi/n, θ̂ 12 = Σi xi yi/n, 
we have 
 
ϖ̂  12 = log (nΣi xi yi / Σi xi Σi yi),   (6) 

 
In [5] the parameter is considered a 
stationary variable. If the input patterns 
change with time, the weight of the network 
is nonstationary, a dynamical system will 
emerge.   
 In the Bernoulli trial, the knowledge of 
the experiment is stored in the parameter, 
the more data information the crispier the 
likelihood function. Similarly the 
knowledge/memory of two neurons are 
stored in the synapse weight. If the synapse 
weight between two neurons increases then 
the entropy decreases. This is the principle 
of energy and information exchange.  
 The learning rule based on mutual 
information is consistent with the Hopfield 
learning rule, which is discussed in [11]. 
However, there is no weight connection 
between two neurons if they fire 
independently; and the less frequently a 
neuron fires the higher the learning rate.
 Let Xi be the neurons that fire to Xj, The 
activation is given by integration and fire 
model 
 
Xj  = s (∑i ωij xi),      (7)  
 
where s is a signal function.  
 A plausible neural network (PLANN) is 
a network with the weight connection given 
by (2) and activation function given by (7). 
Having symmetric weight connections 
ensures a stable state of the network. 

If Pl (Xj =1x, ω) = s (∑i ωij xi) is a 
plausibility function, which can be a 
probability or possibility function depending 
on the normalization, based on inference 
discussed in [5], we have 
 
Pl (Xj =1x) = sup ω Pl (Xj =1x, ω) l (ωx) 
= s (∑i ϖ̂ ij xi)        (8) 

 
Thus, it justifies the maximum likelihood 
estimation for weight parameter, while 
under Bayesian network maximum 
aposterior belief of weight parameter is 
simply an approximation. 
 
3 PLANN Architecture and 
Inference  
PLANN is a recurrent network, technically 
it can have full interconnections as the 
design of Boltzmann machine [1]. However, 
a layer network is more efficient in energy 
conservation, which is favored by nature in 
organization.  
 A classification model FASE based on 
the possibility measure is discussed in [7]. 
FASE is a single layer neural network, with 
each attribute neurons connected to class 
neurons. The attribute neuron statistically 
independent of class neuron has no weight 
connection; it does not contribute any 
evidence. The class neurons receive more 
information from the attribute neurons are 
more likely to fire, this explains the 
principle of inverse inference. The FASE 
model handles the dependency of attribute 
information by the t-norm operation. The 
classification based on possibility measure 
has another advantage that it is not restricted 
to mutually exclusive categories. The class 
can be overlapping or in hierarchy order; for 
example a document can be labeled as 
computer program and C++ simultaneously 
in a training sample. 

FASE model is mathematically 
attractive, but the selection of t-norm is still 
a question. An alternative approach is 
employing hidden neurons to perform 
competitive learning, to circumvent the 
difficulty of conditional dependence.  
 Unsupervised learning is designed as a 
network of input neurons connected to 
hidden competitive neurons, which can have 
multiple levels to provide hierarchy 
clustering. Although the classification is 
usually considered as supervised learning, 
we use the same design as unsupervised 
learning in the PLANN network. The input 

 



pattern contains class labels in additional to 
input pattern; if some class labels are 
missing then it is semi-supervised learning. 
The hidden layer combines the information 
of class and attribute neurons. The posterior 
belief of the class variable can be estimated 
from the network. The information of 
attribute neurons feed forward to the 
competitive hidden neurons, and the wining 
neurons feed back to the class neurons. This 
is similar to the wake-sleep algorithm of [9], 
where each hidden neuron represents a 
cluster in the generative model. 
 Let Yj be the competitive hidden neuron 
connected to the input neurons Xi . From 
equation (2) the active potential of the 
hidden neurons yj received from input 
pattern x1, x2,… xn is  
 
Σi ωij xi = Σi ln(p(xiyj)) – Σi ln (p(xi)). (9) 

 
The second term of (9) can be removed by 
either probability or possibility 
normalization. However, the possibility 
normalization provides the advantage of 
being less sensitive to the number of hidden 
neurons. If the normalized action potential 
of a neuron is larger than threshold, i.e. 
 

s (Σi ωij xi) > 1 – α,    (10) 
  

then it fires, where s(tj) = exp(tj)/supj exp (tj). 
The threshold can be considered as a 

confidence level that an input pattern 
matches with the stored pattern of latent 
variable or hypothesis. This is similar to the 
vigilance parameter in ART network [4].  
After training the cluster will form, since it 
is the stable state of the competitive 
network. The stable state is also similar to 
the resonance of ART.  

 
4 Experiments of PLANN 
In the simulation of PLANN, we use the 
learning algorithm based on the maximum 
likelihood estimation given in (6) and 
additive activation function. The uncertainty 
measure of the weights is not considered.  

If the variable is discrete with k 
categories, it can be encoded by X= (X1, 

X2,…, Xk). Each neuron is an indicator 
function of a particular data value.  A null 
vector represents a missing data value. If the 
variable is continuous, based on the 
inference discussed in [6], there is a 
universal nonparametric functional estimate; 
however the computation of likelihood 
function is too intensive.  For simulation we 
let each neuron X1, X2,…, Xk be sensitive to 
a range of values, that correspond to 
overlapping bins or kernel function (e.g. 
radial basis function) units. When a data x is 
observed, several neurons sensitive to the 
value will fire. Experimental results show 
that the synaptic weights, trained with the 
learning rule, form a Mexican hat function 
as in the feature map, if the inhibitory 
weights at a distance were disregarded. 
 The unsupervised learning algorithm is 
given as follows: 
 
1. Fire the hidden neurons randomly. 
2. M- step: estimate the weight 

connections of input neurons with 
hidden neurons. 

3. E-step: compute the active potentials of 
hidden neurons and normalize into [0,1]. 
If the action potential of a neuron is 
larger than  threshold, 1 -α, then it fires.   

4. Update the synaptic weight if the firing 
of the hidden neuron changes. 

5. Repeat the procedure until the network 
stabilizes. 

 
The M-step is executed locally, with the 

synaptic weight being updated only when 
the activity of the neuron changes; thus, it is 
faster than many other algorithms. This 
learning algorithm is also similar to that of 
the Boltzmann machine [1], where the 
visible neurons are clamped, and the hidden 
neurons run freely until stabilized. The 
number of hidden neurons in the network is 
flexible as long as it is sufficient. Some of 
them lose the competition and have no 
weight; some of them represent the same 
pattern. 

The PLANN algorithm has been tested 
on the datasets of UCI machine learning 
repository [3] for supervised and 
unsupervised learning. It can extract multi-



dimensional pattern such as tic-tac-toe and 
led data. The weights of the trained network 
can be easily transformed into uncertainty 
measure. We demonstrate this feature by 
using the zoo dataset.  

Table 1 shows the network output of the 
PLANN unsupervised learning algorithm for 
the zoo data (the class type in the data is not 
used). It is trained with fifteen hidden 
neurons. After training ten clusters are 
formed. Table 1(a) shows the output 
probabilities, which are transformed from 
the weights of the network. Simple inference 

rules can be derived from the table. Table 
1(b) gives the list of animals in the clusters. 
We see that the networks find the distinctive 
patterns, regardless of the training sample 
size. The normalized action potential after 
training can provide the possibility measure 
of the hidden neurons, which can be 
interpreted as the fuzzy membership of data 
input belonging to a cluster. They are 
summarized in table 1(c), for example mink 
belongs to cluster C5, but it also belongs to 
cluster C3 with a fuzzy membership of .96.

 
 
Table 1. Experimental results of PLANN algorithm for zoo database 
 
(a) Conditional probability of attributes given the cluster 
 
 hair feathers eggs milk airborne aquatic predator toothed backbone breathes venomous fins no legs 2 legs 4 legs 5 or 

more 
tail domestic catsize

C1 1 0 0 1 0.4 0 0 1 1 1 0 0 0 1 0 0 0 0.2 0.6 
C2 0 0 1 0 0 1 0.69 1 1 0 0.08 1 1 0 0 0 1 0 0 
C3 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0.9 0.23 0.77 
C4 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 
C5 0.67 0 0 1 0 1 1 0.83 1 1 0 0.67 0.5 0 0 0 0.83 0 1 
C6 0 1 1 0 0.8 0 0 0 1 1 0 0 0 1 0 0 1 0.15 0 
C7 0 0 1 0 0 0.86 1 0 0 0 0.14 0 0.29 0 0 0.57 0 0 0 
C8 0 0 1 0 0 0.75 0.75 1 1 1 0 0 0 0 1 0 0 0 0 
C9 0 0 0.67 0 0 0 1 1 1 0 0.67 0 1 0 0 0 1 0 0 
C10 0 0 0.91 0 0.55 0 0 0 0 1 0.27 0 0 0 0 0.82 0 0 0 

 
 
(b) List of the animals in the clusters  
 
C1 fruitbat girl gorilla vampire wallaby        
C2 bass carp catfish chub dogfish haddock herring pike piranha seahorse sole stingray tuna 
C3 aardvark antelope bear boar buffalo calf cavy cheetah deer elephant giraffe goat hamster 

 hare leopard lion lynx mole mongoose opossum oryx polecat pony puma pussycat raccoon 
 reindeer squirrel vole wolf   

C4 tortoise            
C5 dolphin mink platypus porpoise seal sealion       
C6 chicken crow dove duck flamingo gull hawk kiwi lark ostrich parakeet penguin pheasant 

 rhea skimmer skua sparrow swan vulture wren   
C7 clam crab crayfish lobster octopus seawasp starfish    
C8 frog newt toad tuatara         
C9 pitviper seasnake slowworm          
C10 flea gnat honeybee housefly ladybug moth scorpion slug termite wasp worm  

 
 
(c) Fuzzy membership of the animals belonging to the clusters* 
 
C3 mink (.96)  
C4 platypus (.83)  
C7 slug (.83) worm (.83) scorpion (.76) 
 
*possibility  or fuzzy membership (>.75). 



5 Discussion 
Our central hypothesis is that the parameter 
or synaptic weight of neural networks can be 
estimated by using the possibility measure. 
The advantage of such a model is that there 
is no prior assumption for the weight as in 
the Bayesian inference, and the E-M 
algorithm can be computed efficiently 
without gradient descent approximation. A 
hardware device can be designed to 
implement the weight update based on 
equation (5), and a very fast online learning 
neural network can be created. 

From the neural computational 
perspective, categories are formed through 
the competition of neuron activities. 
Mathematically this is a relative measure; 
thus it is more straightforward to link the 
inference of classification to the possibility 
measure than to the probability measure. 
The connection of statistical dependency 
and weight configuration in a neural 
network is also very important. It gives a 
clearer interpretation of how the networks 
perform logical and plausible inference, and 
how the networks distinguish pattern and 
noise. 
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