
An intelligent detection scheme for sonar signal tracking

 V.S. KODOGIANNIS D. TOMTSIS+
 Mechatronics Group +TEI of West Macedonia
 Dept of Computer Science Koila,
 University of Westminster Kozani GR-50100
 London HA1 3TP
 UNITED KINGDOM GREECE

Abstract: - A novel version of the adaptive sonar signal thresholding scheme using RBF neural networks is proposed
in this paper. Intensity thresholding has proven to be an effective technique to eliminate the low energy noise and to
reduce the computational load in an underwater target tracking system. The adopted technique yields unbiased
estimates under a non-homogenous sea environment, because the false alarm rate is maintained at a constant level
while the threshold changes with different sea environments. In addition, the threshold for different range cells can be
adaptively estimated, since the noise under estimation is strictly local so that the distance the sonar signals travelled
does not affect the received intensities of noise and targets. Finally, the computational requirements are greatly
reduces through the introduction of a recursive proposed scheme.

Keywords: - Radial basis function networks, sonar, signal thresholding.

1 Introduction
Intensity thresholding has been proven to be an
effective technique for eliminating the low energy noise
and reducing the computational burden in an active
target-tracking algorithm for an underwater sonar
system. The significance of sonar signal thresholding
lies in that measurements gathered from sonar devices
are generally corrupted by various noise signals such as
the ambient and reverberation noise and they contribute
to a high false alarm rate. The performance of a
tracking system is dependent on the rate of false alarm
and the probability of detection, which in turn are
determined by the detection threshold.

Most of the active sonar tracking systems in the
beginning exploited a simple thresholding scheme; i.e.,
a pre-selected constant threshold [1-2]. The constant
false alarm rate approach has been thoroughly
investigated for the selections of radar signal detection
threshold where similar problems are encountered. In
this scheme, the detection threshold is adjusted
according to the probability density of the background
noise to keep the false alarm rate within an acceptable
level which is predefined as a constant, and hence the
name Constant False Alarm Rate (CFAR) approach.

Although studies have been conducted to determine
the distribution of various types noise signals in the sea
and some theoretical results have been reported in the
literature [3-5], the realistic situation vary considerably
and hence the most reliable results are still yielded from
the actual measured data. Taking into account the
spatial and temporal environmental variations of an
underwater active sonar, a recursive version of the an
adaptive CFAR sonar signal thresholding scheme using
radial basis function neural networks is proposed in this
research. The proposed thresholding scheme is applied
to active sonar tracking system exercise against the

realistic sea environment. Experimental results show
that the advantages of the proposed neural network-
based detection thresholding scheme are the following:
• It yields acceptable perform in a non-homogenous

sea environment, because the false alarm rate is
kept constant while the threshold changes with
different sea environments.

• In addition, it can adaptively estimate the threshold
for different range cells because the noise signal
under estimation is strictly local so that the distance
the signals travelled does not affect the received
intensities of noise and targets.

• Finally, the computational burden has been greatly
reduced through the introduction of the recursive
scheme.

2 The adaptive CFAR sonar signal

detection thresholding system
The block diagram of the proposed adaptive CFAR
sonar signal detection thresholding system is illustrated
in Fig. 1.

Fig. 1: The Adaptive CFAR Sonar Signal Detection

Thresholding

The algorithm involves three functional blocks:
• The tentative target eliminator (TTE) is responsible

for removing possible target measurements from
the input array.

• The noise probability density function estimator
(NPDFE) provides the estimated noise probability
density

• The threshold generator (TG) determines the
detection threshold from the noise probability
density function according to the given FAR.

While the first two blocks are constructed using two
RBF networks, the last functional block is simply an
integrator. Taking into accounts the time and spatial
variations of the environment, only the local
information is utilised to estimate the detection
threshold of a data point with range ri, and bearing bj.
The intensities of the points within a reference range-
bearing window of size NM × surrounding the cell
under consideration are taken as the inputs to the
proposed algorithm. Fig. 2 illustrates a range-bearing
window for an omni transmission case. Assume that the
cell under consideration is located at (ri,bj), and that the
reference range-bearing window is of size NM × ,
where M and N are the window lengths extended along
the range and the bearing directions, respectively, and
are generally chosen as odd numbers for the purpose of
symmetry.

 (a) Initialisation Phase (b) Recursion Phase

Fig. 2: Range-bearing Window
For notational convenience, we usually use the
following notation:

2/)1(
,2/)1(

−=

−=

NN
MM

The proposed adaptive CFAR sonar signal detection
scheme, as shown in Fig.1, functions in one of the
following two phases: the initialisation phase and the
recursion phase. For each ping of transmission, the
estimation of the detection threshold for the first cell
considered goes through the initialisation phase,
because there is no existing cell with estimated noise
probability density function from its neighbouring cells
it can build upon. Theoretically, any point can be taken
as the initialisation cell. The point),(11 ++ NM br is chosen
as the initialisation cell since the data within its
reference window is available first. This situation is
illustrated in Fig. 2a. For the rest of the cells, the
thresholds can be estimated point-by-point recursively.
Fig.3 illustrates the range-bearing window for the
above example sliding along both range and bearing
directions. Figs. 3a and 3b show the reference windows
before and after sliding from (ri,bj) to (ri,bj+1), which is
a step of 5 degrees along the bearing.

(a) Reference Window before (c) Reference Window before
 Slides along Bearing Slides along Range

(b) Reference Window after (d) Reference Window after
 Slides along Bearing Slides along Range

Fig. 3: Range-bearing Window Sliding

In the proposed algorithm, instead of taking all the

NM × data points in the new window centred at
(ri,bj+1), as input to estimate the new threshold, only M
new data points from the bearing vector 1, ++NjiB need

to be considered, while the effects of M old data points
from the bearing vector NjiB −, are eliminated. A

bearing vector is a column vector of size
12 += MM . Figs. 3c and 3d illustrate the case where

the reference window slides one range cell along the
direction of range. Again, the only new information
available is from N points of the range vector

jMiR ,1++ and the old N data points to be deleted are

from the range vector jMiR ,− . Similarly, a range vector

is a row vector of size 12 += NN . The computational
requirements to process one data point are reduced
from NM × operations to either 2M or 2N operations
depending on the sliding direction, thus decreasing the
computational burden considerably.

3 The tentative target eliminator
3.1 TTE-RBF structure
The objective of the tentative target elimination (TTE)
is to remove the tentative targets from the
measurements. The structure of the TTE is illustrated in
Fig. 4. As in a standard RBF network, the TTE has
three layers: an input layer, an output layer and a
hidden layer. While there is only one node in the input
layer that accepts input from the measurement sequence
{ms}, there are two nodes in the output layer that group
the noise sequence as well as the tentative targets.

The hidden layer is composed of two nodes: one is used
for the classification of noise (NODE_MIN) and the
other (NODE_MAX) for the tentative target(s) (if there
exists any). The kernel RBF is chosen as the commonly
used Gaussian function [6]

2)
)(

(
2
1

2
1)(σ

πσ
φ

cxw

ex
−

−
= (1)

where, c = cmin or cmax is the centre, σ = σmin or σmax is
the variance of the node NODE_MIN or NODE_MAX,
respectively.

Fig. 4: The Tentative Target Eliminator

The operation of the TTE can be briefly explained as
follows. All the sonar measurements within the
reference window are first ordered by increasing
intensity before feeding to the TTE as an input
sequence. The input datum with the lowest intensity
other than zero and the one with the highest intensity
are used as the initial values for the two node centres.
Then the ordered intensities are fed to the input layer of
the TTE and are subsequently grouped into lower and
higher energy classes. If the higher energy class
satisfies the criterion for tentative targets, then the
intensity of the individual member of that group is
deleted from the measurements. This operates
recursively until there are no more tentative targets.

3.2 Linked–List: An I/O Data Structure
The first level in the TTE process is the data structure
that is utilised to store ordered data sequences, i.e. the
linked-list. The structure of a linked-list is depicted in
Fig. 5. As shown in Fig. 5a, an element in the linked–
list has three fields: A pointer field that points to the
next element in the linked–list, an address field that
stores the address of input data, and a classification
field that records one of the three types of data being
classified: UNCLASSIFIED, NOISE and TENTATIVE
NOISE. The linked-list is addressed via a head-pointer
that resides on a separate head node that has two fields
or records. In addition to the pointer or the address
field, the head node also possesses a z field. Zero-
intensity elements are not included in the linked-list,
but the number of zero intensity elements is recorded in
the z field of the head node. Thus, the first element that
the linked-list points to has the lowest nonzero intensity
and the last element that the linked-list points to has the
highest intensity within their corresponding window.

Therefore, the length of the linked-list)(NML ×≤
indicates the number of nonzero elements. These are
illustrated in Fig. 5b.

Fig. 5: Linked-List: a Structure for Ordered Data

Sequence

3.3 TTE Adaptive Learning Procedures
The TTE operates in two phases: the initialisation
phase and the recursion phase. The detailed procedure
for each phase is given below:
3.3.1 Initialisation Phase
Step 1: The measurement data from the reference
window, which are saved in an NM × input array, are
first arranged in the increasing order of intensity and
saved in a linked-list as described above.
Step2: The TTE is initialised as follows: The content
Imin addressed by the first element in the linked –list is
set to be the centre cmin of the node NODE_MIN
(cmin=Imin). The corresponding classification is set to
NOISE. The highest intensity Imax that is addressed by
the last element in the linked-list is set to be the centre
cmax of the node NODE_MAX (cmax=Imax). Its
corresponding classification is set as TENTATIVE
TARGETS. The variances of both nodes are set as the
difference between the centres of the two nodes: σmax =
σmin = cmax - cmin. The initial weights are set to unity:
wmax = wmin = 1. Fig. 5c shows the hidden layer-state of
the TTE after initialisation.
Step 3: Starting from the beginning of the linked-list,
and selecting those elements that were classified as
“UNCLASSIFIED” to be the inputs, the response of the
systems to each input, denoted as ms, is given by

)()(
)()(

maxminmin,

minmaxmax,

sss

sss

mmg
mmg

φφ

φφ

−=

−=
 (2)

If min,max, ss gg > , set the input element as tentative
target, update the centre cmax, the variance σmax, and the
weight wmax of the node NODE_MAX according to

)()(maxmaxmaxmax smcwwc +⋅∇= (3)

)(1
minmax

max
max cc

w
−=σ (4)

)(
1

max
max w

w
∇

= (5)

where
1

1)(
max

max +
=∇

w
w is defined as the weight

adaptor for wmax. Otherwise, set the input element as
NOISE, update the centre cmin, the variance σmin, and the
weight wmin corresponding to the node NODE_MIN
according to

)()(minminminmin smcwwc +⋅∇= (6)

)(1
minmax

min
min cc

w
−=σ (7)

)(
1

min
min w

w
∇

= (8)

where the weight adaptor for wmin is defined as

1
1)(

min
min +

=∇
w

w .This is repeated until the end of

the linked-list is reached. Thus, two classes of data are
grouped and classified as NOISE and TENTATIVE
TARGETS.
Step 4: If the criterion for tentative target minmax cc >>
is satisfied, then delete these tentative targets from the
linked-list, set the classification field of the remaining
elements in the linked-list back to UNCLASSIFIED,
increase the number of zero intensity elements by the
number of tentative targets deleted, and return to step 2.
This is repeated until there is no more input
measurements that can be classified as tentative targets.
Step 5: The remaining elements in the linked-list after
step 4 are considered as the noise and their
corresponding classification fields are set to NOISE
before being sent to the next functional block
(NPDFE) as input. In addition, since the NODE_MAX
as this point also represents a group of noise signals
though with higher energy than the group in
NODE_MIN, the effect of the NODE_MIN needs to
combined with that of the NODE_MAX such that

)()(maxmaxminminmin cwcwwc +⋅∆= (9)
)(/1min ww ∆= (10)

where
maxmin

1)(
ww

w
+

=∆ called the weight updating

factor, thus setting up the initial state of NODE_MIN
for the TTE in the recursion phase.

3.3.2 Recursion Phase
Step 1: Before sliding the reference window, step 1
eliminates the effects of the data not included in the

new window. There are two cases that should be
considered separately. If the window slides along the
direction of bearing, as shown in Fig 3a, then group
those measurements {ms} that reside within the window
of the bearing vector NjiB −, , eliminate their influence

from the resultant noise measurement list by adjusting
the centre and the weight of the node NODE_MIN
according to

∑
=

−∇=
N

s
smcNwc

1
minminmin))(,((11)

),(
1

min
min Nww ∇= (12)

On the other hand, if the window slides along the
direction of range, as depicted in Fig. 3b, the
consequences of those elements { } jMis Rm ,2/−∈ ,
which lie outside the new window after sliding, are
eliminated by updating the centre and the weight of the
nose NODE_MIN according to

∑
=

−∇=
M

s
smcMwc

1
minminmin))(,((13)

),(
1

min
min Mww ∇= (14)

In both cases, the modified weight adaptor is defined as

Kw
Kw

−
=∇

min
min

1),(.

Step 2: Depending on the directions of sliding, either
along the range or the bearing, slide the window by
updating the point of interest as ri=ri+1 or bj=bj+1,
respectively.
Step 3: Consider the measurement intensities I(ri,bj)
where jMiji Rbr ,2/),(+∈ or 2,),(Njiji Rbr +∈ ,
depending on whether the window slides along the
bearing or the range cell. Store the resulting data in a
sub-linked –list in the increasing order of intensity.
Step 4: Select the highest intensity as the centre cmax of
the node NODE_MAX, set: σmax = σmin = cmax - cmin, and
repeat steps 3 and 4 described in the initialisation phase
until all the tentative targets are deleted from the list.
Step 5: Insert the sub-linked-list in the increasing order
of intensity into the linked–list obtained from the
previous iteration and sends the resulting data sequence
as input to the NPDFE, the next functional block.

4 The noise probability density function

estimator

4.1 NPDFE-RBF structure
The noise probability density function estimator
(NPDFE) is illustrated in Fig. 6. As indicated in Fig.
6a, both the input and the output layers each have one
node. The measured noise sequence {ns}, which is
obtained from the TTE in the previous functional block,
is used as the input to the NPDFE. The output is

employed in the training phase to justify the adaptation
for the centres and the weights of the hidden layer.

Fig. 6: The Noise Probability Density Function

Estimator

In the training phase, the output ys, as a function of the
input {ns} is given as follows:

∑ θ−φ=
k

ksks nwy)((15)

where wk, θk represent the weight and threshold of the
kth node, whereas the basis function takes the form of
Gaussian density which is typical in RBFs. That is

2)(

2
1)(k

ks cn

k
sk en σ

−
−

πσ
=φ (16)

where ck and σk are the centre and the standard
deviation of the Gaussian density function,
respectively. The NPDFE learns the noise probability
density function adaptively. After learning, the centres
of the NPDFE represent the intensities of the noise
signals and the weights render their corresponding
probability densities.

4.2 NPDFE Adaptive Learning Procedures
As in the TTE, the NPDFE has two learning stages: the
initialisation and the recursion stages.
4.2.1 Initialisation Phase
In the initialisation stage, there is no estimated noise
probability density function available for the current
ping of transmission. The learning process starts all
over from the very beginning with zero number of
nodes. Contained in the linked-list, the noise process
{ns} that was obtained by removing tentative targets
from the first available range-bearing window of
measurements in a transmission, and then arranged in
an increasing order of intensity, is forwarded one by
one to the input node of the NPDE.
If the system does not response to an input ns, i.e. its
output ys=0, then add a new node centred at

sk nc = (17)

and set its corresponding weight to:

∑
≠∀

+
=

kj
j

k w
w

1
1

 (18)

Otherwise if 0≠sy , update the centre and the weight
of the node with the highest response as follows:

),(skkkk ncwwc +⋅∇= − (19)

kkk www +∆+= (20)

where
1

1
+

=∇−

k
k w

w and
∑
≠

+

+
=∆

kj
j

k w
w

1
1

 are

defined as a weight decrement factor and a weight
increment adaptor, respectively. In both cases, adjust
the rest of the weights according to

∑
∀

+
≠ ⋅⋅∆=

j
ljkl wwww (21)

where the modified weight increment adaptor is defined

as
∑ +

=∆+

j
jw

w
1

1
.

After processing all the noise elements within the
window of the initialisation cell, the resulting centres
and their corresponding weights give rise to the
probability densities of the noise sequence that will be
sent as input to the next functional block to calculate
the detection threshold.

4.2.2 Recursion Phase
In the recursion phase, the existing structure of the
NPDFE from the previous iteration lays the foundation
for the current estimation. One can simply eliminate the
effect of the input data that lie outside the window of
the next iteration by sliding the window, and then
accommodate the contribution of new data that has not
been included in the last iteration. The learning
procedure can be further divided into the following
three steps:
Step 1: Depending on the sliding direction, the noise
measurements contained in the range–vector window

jMiR ,− or the bearing-vector window NjiB −, are

presented sequentially as inputs to the NPDFE to
eliminate their contribution to the noise probability
density estimation for the cell before sliding. This is
accomplished by simply justifying the centre and the
weight related to the node with the highest response as:

),(skkkk ncwwc −⋅∇= + (22)

kkk www −∆−= (23)

where
1

1
−

=∇+

k
k w

w and
∑
≠

−

−
=∆

kj
j

k w
w

1
1

 are

defined as weight increment factor and weight
decrement adaptor, respectively. The weights of the rest
of the nodes are updated subsequently as

∑
∀

−
≠ ⋅⋅∆=

j
ljkl wwww (24)

where the modified weight decrement adaptor is

defined as
∑ −

=∆−

j
jw

w
1

1
.

If the weight after adjustment decreases to zero, i.e.
wk=0, remove the corresponding node from the
network.
Step 2: Slide the window either by ri=ri+1 or by
bj=bj+1 depending on whether the window slides along
the range or the bearing direction.
Step 3: Train the system with the new noise
measurements from the range-vector window after
sliding jMiR ,+ , provided the window slides along the

range direction or from the bearing-vector window

NjiB +, if the window slides along the bearing direction,

to justify the centres and the weights of the NPDFE.
The adjustment approaches taken are the same as those
in the initialisation phase described above.
After presenting all the input noise signals to the
system once, the training process is terminated for that
cell. The centres along with their corresponding
weights provide the probability density function of the
noise measurements and therefore are taken as the
output of the NPDFE and sent to the next functional
block.

4.3 The Threshold Generator
In the Threshold Generator functional block, the
resultant noise probability density is first stored in a
reverse ordered linked-list with reference to the centre
values in a decreasing order. Then, with the estimated
noise probability density, it is simply a matter of
integrating the to the desired false alarm rate by

∑∑
−==

≥∩≤
K

Tk
k

K

Tk
k FARwFARw

1
 (25)

and the required detection threshold can be obtained as
DT=cT (26)

5 Application to active sonar tracking
The proposed thresholding scheme has been applied for
an active sonar signal tracking system simulator in a
realistic sea environment. The above operations are
illustrated using an example as shown in Fig. 7. The
received measurements from sonar containing both
target and noise information is the only viable inputs.
Fig. 7a shows a sample of the real sea intensity (in a
semilog scale) from underwater active sonar in an omni
transmission mode. In this case, the bearing angle
varies from 0 to 360 degrees with a step size of 1
degree; whereas the distance or range is discretised into
80 range cells numbered from 1 to 80. The intensity is
shown in the log scale because some of the tentative
target intensities are much stronger than the average

noise intensity. As we have mentioned, the first step is
to eliminate the tentative targets from the
measurements. The received signals with higher
intensity are considered as tentative targets and
therefore are deleted form the measurements. Fig. 7b
depicts the measurement noise thus obtained.

(a) A sample of the real sea data from underwater

sonar

(b) Measurement Noise after Removal of Tentative

Targets

(c) Estimated noise probability density function

Fig. 7: Illustration of the proposed scheme

After the removal of the tentative targets, the remaining
information is treated as noise, from which the noise
probability density function is then estimated. Fig. 7c
shows the resulting noise probability density function.

With the estimated noise probability density and a
given false alarm rate (FAR=0.01 in this case), shown
as the shaded area, the detecting threshold, can be
easily obtained as indicated in Fig. 7c.

6 Conclusions
A recursive version of the adaptive CFAR sonar signal
thresholding scheme using RBF networks has been
proposed in this paper. Both theoretical analysis an
experimental results show that the proposed neural
network–based recursive thresholding scheme exhibits
the following prominent features:
First it yields an acceptable performance under non-
homogenous sea environments; the false alarm rate is
kept constant while the threshold changes with
different, because the false alarm rate is kept constant
while the threshold changes with different sea
environments. This is due to the fact that the detection
threshold is not determined according to a pre-assigned
sea noise condition but using the measurements
gathered from local information only. Secondly, the
proposed scheme can adaptively estimate the threshold
for different range cells since the noise signal under
estimation is strictly local therefore the received
intensities of noise and targets are not affected by the
distance travelled by the sonar signals. Finally, the
computational requirements has been greatly reduced
through the introduction of the recursive scheme due to
the fact that the computations required to process one
data point reduces from NM × operations to 2M or
2N operations depending on the sliding directions.

References:
[1] Srinivasan, R., Simulation of CFAR detection

algorithms for arbitrary clutter distributions,
Radar, Sonar and Navigation, IEE
Proceedings, Vol. 147, No. 1, 2000, pp. 31-40.

[2] Gelfand, S.B., Fortmann, T.E., Bar-Shalom, Y.,
Adaptive detection threshold optimisation for
tracking in clutter, Aerospace and Electronic
Systems, IEEE Transactions on, Vol. 32, No. 2,
1996, pp. 514-523.

[3] Hennessey, G., Leung, H., Drosopoulos, A., Yip,
P.C., Sea-clutter modeling using a radial-basis-
function neural network, Oceanic Engineering,
IEEE Journal of, Vol. 26, No. 3, 2001, 358-372.

[4] Watts, S., The performance of cell-averaging CFAR
systems in sea clutter, Radar Conference, The
Record of the IEEE 2000 International, 2000, pp.
398-403.

[5] Haykin, S., Bhattacharya, T.K., Modular learning
strategy for signal detection in a non-stationary
environment, Signal Processing, IEEE Transactions
on, Vol. 45, No. 6, 1997, pp. 1619-1637.

[6] Kodogiannis, V.S., Comparison of advanced
learning algorithms for short-term load forecasting,,
JOURNAL OF INTELLIGENT AND FUZZY
SYSTEMS, Vol. 8, No. 4 , 2000, pp. 243-260.

