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Abstract: - A novel version of the adaptive sonar signal thresholding scheme using RBF neural networks is proposed 
in this paper. Intensity thresholding has proven to be an effective technique to eliminate the low energy noise and to 
reduce the computational load in an underwater target tracking system. The adopted technique yields unbiased 
estimates under a non-homogenous sea environment, because the false alarm rate is maintained at a constant level 
while the threshold changes with different sea environments. In addition, the threshold for different range cells can be 
adaptively estimated, since the noise under estimation is strictly local so that the distance the sonar signals travelled 
does not affect the received intensities of noise and targets. Finally, the computational requirements are greatly 
reduces through the introduction of a recursive proposed scheme. 
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1 Introduction 
Intensity thresholding has been proven to be an 
effective technique for eliminating the low energy noise 
and reducing the computational burden in an active 
target-tracking algorithm for an underwater sonar 
system. The significance of sonar signal thresholding 
lies in that measurements gathered from sonar devices 
are generally corrupted by various noise signals such as 
the ambient and reverberation noise and they contribute 
to a high false alarm rate. The performance of a 
tracking system is dependent on the rate of false alarm 
and the probability of detection, which in turn are 
determined by the detection threshold. 

Most of the active sonar tracking systems in the 
beginning exploited a simple thresholding scheme; i.e., 
a pre-selected constant threshold [1-2]. The constant 
false alarm rate approach has been thoroughly 
investigated for the selections of radar signal detection 
threshold where similar problems are encountered. In 
this scheme, the detection threshold is adjusted 
according to the probability density of the background 
noise to keep the false alarm rate within an acceptable 
level which is predefined as a constant, and hence the 
name Constant False Alarm Rate (CFAR) approach.  

Although studies have been conducted to determine 
the distribution of various types noise signals in the sea 
and some theoretical results have been reported in the 
literature [3-5], the realistic situation vary considerably 
and hence the most reliable results are still yielded from 
the actual measured data. Taking into account the 
spatial and temporal environmental variations of an 
underwater active sonar, a recursive version of the an 
adaptive CFAR sonar signal thresholding scheme using 
radial basis function neural networks is proposed in this 
research. The proposed thresholding scheme is applied 
to active sonar tracking system exercise against the 

realistic sea environment. Experimental results show 
that the advantages of the proposed neural network-
based detection thresholding scheme are the following: 
• It yields acceptable perform in a non-homogenous 

sea environment, because the false alarm rate is 
kept constant while the threshold changes with 
different sea environments.  

• In addition, it can adaptively estimate the threshold 
for different range cells because the noise signal 
under estimation is strictly local so that the distance 
the signals travelled does not affect the received 
intensities of noise and targets.  

• Finally, the computational burden has been greatly 
reduced through the introduction of the recursive 
scheme. 

 
2 The adaptive CFAR sonar signal 

detection thresholding system 
The block diagram of the proposed adaptive CFAR 
sonar signal detection thresholding system is illustrated 
in Fig. 1.  

 
Fig. 1: The Adaptive CFAR Sonar Signal Detection 

Thresholding 
 
The algorithm involves three functional blocks: 
• The tentative target eliminator (TTE) is responsible 

for removing possible target measurements from 
the input array. 



• The noise probability density function estimator 
(NPDFE) provides the estimated noise probability 
density 

• The threshold generator (TG) determines the 
detection threshold from the noise probability 
density function according to the given FAR.  

While the first two blocks are constructed using two 
RBF networks, the last functional block is simply an 
integrator. Taking into accounts the time and spatial 
variations of the environment, only the local 
information is utilised to estimate the detection 
threshold of a data point with range ri, and bearing bj. 
The intensities of the points within a reference range-
bearing window of size NM × surrounding the cell 
under consideration are taken as the inputs to the 
proposed algorithm. Fig. 2 illustrates a range-bearing 
window for an omni transmission case. Assume that the 
cell under consideration is located at (ri,bj), and that the 
reference range-bearing window is of size NM × , 
where M and N are the window lengths extended along 
the range and the bearing directions, respectively, and 
are generally chosen as odd numbers for the purpose of 
symmetry.  

 
   (a) Initialisation Phase    (b) Recursion Phase 
 

Fig. 2: Range-bearing Window 
For notational convenience, we usually use the 
following notation: 
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The proposed adaptive CFAR sonar signal detection 
scheme, as shown in Fig.1, functions in one of the 
following two phases: the initialisation phase and the 
recursion phase. For each ping of transmission, the 
estimation of the detection threshold for the first cell 
considered goes through the initialisation phase, 
because there is no existing cell with estimated noise 
probability density function from its neighbouring cells 
it can build upon. Theoretically, any point can be taken 
as the initialisation cell. The point ),( 11 ++ NM br is chosen 
as the initialisation cell since the data within its 
reference window is available first. This situation is 
illustrated in Fig. 2a. For the rest of the cells, the 
thresholds can be estimated point-by-point recursively. 
Fig.3 illustrates the range-bearing window for the 
above example sliding along both range and bearing 
directions. Figs. 3a and 3b show the reference windows 
before and after sliding from (ri,bj) to (ri,bj+1), which is 
a step of 5 degrees along the bearing.  

 
(a) Reference Window before  (c) Reference Window before 
     Slides along Bearing                 Slides along Range 
 
 

 
(b) Reference Window after   (d) Reference Window after 
      Slides along Bearing        Slides along Range   

Fig. 3: Range-bearing Window Sliding 
 
In the proposed algorithm, instead of taking all the 

NM × data points in the new window centred at 
(ri,bj+1), as input to estimate the new threshold, only M 
new data points from the bearing vector 1, ++NjiB  need 

to be considered, while the effects of M old data points 
from the bearing vector NjiB −,  are eliminated. A 

bearing vector is a column vector of size 
12 += MM . Figs. 3c and 3d illustrate the case where 

the reference window slides one range cell along the 
direction of range. Again, the only new information 
available is from N points of the range vector 

jMiR ,1++ and the old N data points to be deleted are 

from the range vector jMiR ,− . Similarly, a range vector 

is a row vector of size 12 += NN . The computational 
requirements to process one data point are reduced 
from NM × operations to either 2M or 2N operations 
depending on the sliding direction, thus decreasing the 
computational burden considerably. 
 
3 The tentative target eliminator 
3.1 TTE-RBF structure 
The objective of the tentative target elimination (TTE) 
is to remove the tentative targets from the 
measurements. The structure of the TTE is illustrated in 
Fig. 4. As in a standard RBF network, the TTE has 
three layers: an input layer, an output layer and a 
hidden layer. While there is only one node in the input 
layer that accepts input from the measurement sequence 
{ms}, there are two nodes in the output layer that group 
the noise sequence as well as the tentative targets.   



The hidden layer is composed of two nodes: one is used 
for the classification of noise (NODE_MIN) and the 
other (NODE_MAX) for the tentative target(s) (if there 
exists any). The kernel RBF is chosen as the commonly 
used Gaussian function [6] 
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where, c = cmin or cmax is the centre, σ = σmin or σmax is 
the variance of the node NODE_MIN or NODE_MAX, 
respectively.  

 
Fig. 4:  The Tentative Target Eliminator 

 
The operation of the TTE can be briefly explained as 
follows. All the sonar measurements within the 
reference window are first ordered by increasing 
intensity before feeding to the TTE as an input 
sequence. The input datum with the lowest intensity 
other than zero and the one with the highest intensity 
are used as the initial values for the two node centres. 
Then the ordered intensities are fed to the input layer of 
the TTE and are subsequently grouped into lower and 
higher energy classes. If the higher energy class 
satisfies the criterion for tentative targets, then the 
intensity of the individual member of that group is 
deleted from the measurements. This operates 
recursively until there are no more tentative targets. 
 
3.2 Linked–List: An I/O Data Structure 
The first level in the TTE process is the data structure 
that is utilised to store ordered data sequences, i.e. the 
linked-list. The structure of a linked-list is depicted in 
Fig. 5. As shown in Fig. 5a, an element in the linked–
list has three fields: A pointer field that points to the 
next element in the linked–list, an address field that 
stores the address of input data, and a classification 
field that records one of the three types of data being 
classified: UNCLASSIFIED, NOISE and TENTATIVE 
NOISE. The linked-list is addressed via a head-pointer 
that resides on a separate head node that has two fields 
or records. In addition to the pointer or the address 
field, the head node also possesses a z field. Zero-
intensity elements are not included in the linked-list, 
but the number of zero intensity elements is recorded in 
the z field of the head node. Thus, the first element that 
the linked-list points to has the lowest nonzero intensity 
and the last element that the linked-list points to has the 
highest intensity within their corresponding window. 

Therefore, the length of the linked-list )( NML ×≤  
indicates the number of nonzero elements. These are 
illustrated in Fig. 5b. 

 
Fig. 5: Linked-List: a Structure for Ordered Data 

Sequence 
 
3.3 TTE Adaptive Learning Procedures 
The TTE operates in two phases: the initialisation 
phase and the recursion phase. The detailed procedure 
for each phase is given below: 
3.3.1 Initialisation Phase 
Step 1: The measurement data from the reference 
window, which are saved in an NM ×  input array, are 
first arranged in the increasing order of intensity and 
saved in a linked-list as described above. 
Step2: The TTE is initialised as follows: The content 
Imin addressed by the first element in the linked –list is 
set to be the centre cmin of the node NODE_MIN 
(cmin=Imin). The corresponding classification is set to 
NOISE. The highest intensity Imax that is addressed by 
the last element in the linked-list is set to be the centre 
cmax of the node NODE_MAX (cmax=Imax). Its 
corresponding classification is set as TENTATIVE 
TARGETS. The variances of both nodes are set as the 
difference between the centres of the two nodes: σmax = 
σmin = cmax - cmin. The initial weights are set to unity: 
wmax = wmin = 1. Fig. 5c shows the hidden layer-state of 
the TTE after initialisation. 
Step 3: Starting from the beginning of the linked-list, 
and selecting those elements that were classified as 
“UNCLASSIFIED” to be the inputs, the response of the 
systems to each input, denoted as ms, is given by 
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If  min,max, ss gg > , set the input element as tentative 
target, update the centre cmax, the variance σmax, and the 
weight wmax of the node NODE_MAX according to 
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adaptor for wmax. Otherwise, set the input element as 
NOISE, update the centre cmin, the variance σmin, and the 
weight wmin corresponding to the node NODE_MIN 
according to 
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where the weight adaptor for wmin is defined as 
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w .This is repeated until the end of 

the linked-list is reached. Thus, two classes of data are 
grouped and classified as NOISE and TENTATIVE 
TARGETS. 
Step 4: If the criterion for tentative target minmax cc >>  
is satisfied, then delete these tentative targets from the 
linked-list, set the classification field of the remaining 
elements in the linked-list back to UNCLASSIFIED, 
increase the number of zero intensity elements by the 
number of tentative targets deleted, and return to step 2. 
This is repeated until there is no more input 
measurements that can be classified as tentative targets. 
Step 5: The remaining elements in the linked-list after 
step 4 are considered as the noise and their 
corresponding classification fields are set to NOISE 
before being sent to the next functional block 
(NPDFE) as input. In addition, since the NODE_MAX 
as this point also represents a group of noise signals 
though with higher energy than the group in 
NODE_MIN, the effect of the NODE_MIN needs to 
combined with that of the NODE_MAX such that 
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factor, thus setting up the initial state of NODE_MIN 
for the TTE in the recursion phase. 
 
3.3.2 Recursion Phase 
Step 1: Before sliding the reference window, step 1 
eliminates the effects of the data not included in the 

new window. There are two cases that should be 
considered separately. If the window slides along the 
direction of bearing, as shown in Fig 3a, then group 
those measurements {ms} that reside within the window 
of the bearing vector NjiB −, , eliminate their influence 

from the resultant noise measurement list by adjusting 
the centre and the weight of the node NODE_MIN 
according to 
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On the other hand, if the window slides along the 
direction of range, as depicted in Fig. 3b, the 
consequences of those elements { } jMis Rm ,2/−∈ , 
which lie outside the new window after sliding, are 
eliminated by updating the centre and the weight of the 
nose NODE_MIN according to 

∑
=

−∇=
M

s
smcMwc

1
minminmin ))(,(    (13) 

),(
1

min
min Mww ∇=      (14) 

In both cases, the modified weight adaptor is defined as  
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Step 2: Depending on the directions of sliding, either 
along the range or the bearing, slide the window by 
updating the point of interest as ri=ri+1 or bj=bj+1, 
respectively. 
Step 3: Consider the measurement intensities I(ri,bj) 
where jMiji Rbr ,2/),( +∈ or 2,),( Njiji Rbr +∈ ,  
depending on whether the window slides along the 
bearing or the range cell. Store the resulting data in a 
sub-linked –list in the increasing order of intensity.  
Step 4: Select the highest intensity as the centre cmax of 
the node NODE_MAX, set: σmax = σmin = cmax - cmin, and 
repeat steps 3 and 4 described in the initialisation phase 
until all the tentative targets are deleted from the list. 
Step 5: Insert the sub-linked-list in the increasing order 
of intensity into the linked–list obtained from the 
previous iteration and sends the resulting data sequence 
as input to the NPDFE, the next functional block. 
 
 
4 The noise probability density function 

estimator 
 
4.1 NPDFE-RBF structure 
The noise probability density function estimator 
(NPDFE) is illustrated in Fig. 6. As indicated in Fig. 
6a, both the input and the output layers each have one 
node. The measured noise sequence {ns}, which is 
obtained from the TTE in the previous functional block, 
is used as the input to the NPDFE. The output is  



employed in the training phase to justify the adaptation 
for the centres and the weights of the hidden layer.  
 

 
Fig. 6: The Noise Probability Density Function 

Estimator 
 
In the training phase, the output ys, as a function of the 
input {ns} is given as follows: 

∑ θ−φ=
k
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where wk, θk  represent the weight and threshold of the 
kth node, whereas the basis function takes the form of 
Gaussian density which is typical in RBFs. That is 

2)(

2
1)( k

ks cn

k
sk en σ

−
−

πσ
=φ      (16) 

where ck and σk are the centre and the standard 
deviation of the Gaussian density function, 
respectively. The NPDFE learns the noise probability 
density function adaptively. After learning, the centres 
of the NPDFE represent the intensities of the noise 
signals and the weights render their corresponding 
probability densities. 
 
4.2 NPDFE Adaptive Learning Procedures 
As in the TTE, the NPDFE has two learning stages: the 
initialisation and the recursion stages. 
4.2.1 Initialisation Phase 
In the initialisation stage, there is no estimated noise 
probability density function available for the current 
ping of transmission. The learning process starts all 
over from the very beginning with zero number of 
nodes. Contained in the linked-list, the noise process 
{ns} that was obtained by removing tentative targets 
from the first available range-bearing window of 
measurements in a transmission, and then arranged in 
an increasing order of intensity, is forwarded one by 
one to the input node of the NPDE. 
If the system does not response to an input ns, i.e. its 
output ys=0, then add a new node centred at  

sk nc =         (17) 

and set its corresponding weight to: 
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Otherwise if 0≠sy , update the centre and the weight 
of the node with the highest response as follows: 
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defined as a weight decrement factor and a weight 
increment adaptor, respectively. In both cases, adjust 
the rest of the weights according to 
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After processing all the noise elements within the 
window of the initialisation cell, the resulting centres 
and their corresponding weights give rise to the 
probability densities of the noise sequence that will be 
sent as input to the next functional block to calculate 
the detection threshold. 
 
4.2.2 Recursion Phase 
In the recursion phase, the existing structure of the 
NPDFE from the previous iteration lays the foundation 
for the current estimation. One can simply eliminate the 
effect of the input data that lie outside the window of 
the next iteration by sliding the window, and then 
accommodate the contribution of new data that has not 
been included in the last iteration. The learning 
procedure can be further divided into the following 
three steps: 
Step 1: Depending on the sliding direction, the noise 
measurements contained in the range–vector window 

jMiR ,− or the bearing-vector window NjiB −,  are 

presented sequentially as inputs to the NPDFE to 
eliminate their contribution to the noise probability 
density estimation for the cell before sliding. This is 
accomplished by simply justifying the centre and the 
weight related to the node with the highest response as: 
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defined as weight increment factor and weight 
decrement adaptor, respectively. The weights of the rest 
of the nodes are updated subsequently as 
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If the weight after adjustment decreases to zero, i.e. 
wk=0, remove the corresponding node from the 
network. 
Step 2: Slide the window either by ri=ri+1 or by 
bj=bj+1 depending on whether the window slides along 
the range or the bearing direction. 
Step 3: Train the system with the new noise 
measurements from the range-vector window after 
sliding jMiR ,+ , provided the window slides along the 

range direction or from the bearing-vector window 

NjiB +,  if the window slides along the bearing direction, 

to justify the centres and the weights of the NPDFE. 
The adjustment approaches taken are the same as those 
in the initialisation phase described above. 
After presenting all the input noise signals to the 
system once, the training process is terminated for that 
cell. The centres along with their corresponding 
weights provide the probability density function of the 
noise measurements and therefore are taken as the 
output of the NPDFE and sent to the next functional 
block. 
 
4.3 The Threshold Generator 
In the Threshold Generator functional block, the 
resultant noise probability density is first stored in a 
reverse ordered linked-list with reference to the centre 
values in a decreasing order. Then, with the estimated 
noise probability density, it is simply a matter of 
integrating the to the desired false alarm rate by 
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and the required detection threshold can be obtained as  
DT=cT         (26) 

 
 
5 Application to active sonar tracking 
The proposed thresholding scheme has been applied for 
an active sonar signal tracking system simulator in a 
realistic sea environment. The above operations are 
illustrated using an example as shown in Fig. 7. The 
received measurements from sonar containing both 
target and noise information is the only viable inputs. 
Fig. 7a shows a sample of the real sea intensity (in a 
semilog scale) from underwater active sonar in an omni 
transmission mode. In this case, the bearing angle 
varies from 0 to 360 degrees with a step size of 1 
degree; whereas the distance or range is discretised into 
80 range cells numbered from 1 to 80. The intensity is 
shown in the log scale because some of the tentative 
target intensities are much stronger than the average 

noise intensity. As we have mentioned, the first step is 
to eliminate the tentative targets from the 
measurements. The received signals with higher 
intensity are considered as tentative targets and 
therefore are deleted form the measurements. Fig. 7b 
depicts the measurement noise thus obtained. 
 

 
(a) A sample of the real sea data from underwater 

sonar 

 
(b) Measurement Noise after Removal of Tentative 

Targets 
 

 
(c) Estimated noise probability density function 

 
Fig. 7: Illustration of the proposed scheme 

 
After the removal of the tentative targets, the remaining 
information is treated as noise, from which the noise 
probability density function is then estimated. Fig. 7c 
shows the resulting noise probability density function.  



With the estimated noise probability density and a 
given false alarm rate (FAR=0.01 in this case), shown 
as the shaded area, the detecting threshold, can be 
easily obtained as indicated in Fig. 7c. 
 
 
6 Conclusions 
A recursive version of the adaptive CFAR sonar signal 
thresholding scheme using RBF networks has been 
proposed in this paper. Both theoretical analysis an 
experimental results show that the proposed neural 
network–based recursive thresholding scheme exhibits 
the following prominent features: 
First it yields an acceptable performance under non-
homogenous sea environments; the false alarm rate is 
kept constant while the threshold changes with 
different, because the false alarm rate is kept constant 
while the threshold changes with different sea 
environments. This is due to the fact that the detection 
threshold is not determined according to a pre-assigned 
sea noise condition but using the measurements 
gathered from local information only. Secondly, the 
proposed scheme can adaptively estimate the threshold 
for different range cells since the noise signal under 
estimation is strictly local therefore the received 
intensities of noise and targets are not affected by the 
distance travelled by the sonar signals. Finally, the 
computational requirements has been greatly reduced 
through the introduction of the recursive scheme due to 
the fact that the computations required to process one 
data point reduces from NM ×  operations to 2M or 
2N operations depending on the sliding directions. 
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