A New Vector Quantization Approach via Self-Organizing Map

Lixin Xuf, W. Q. Liu* and V. Svetha!
1 : Department of Automatic Control, Beijing Institute of Technology, P.R. China
T : School of Computing, Curtin University of Technology,
WA, 6102, Australia Email : wanquan@cs.curtin.edu.au

Abstract In this paper, a new algorithm is proposed for vector quantization based on self-organizing map (SOM)
network. First, a conventional self-organizing map is modified to deal with dead codebooks in the learning process and
is used to obtain the codebook distribution structure for given input data. Second, it is proved that the modified SOM
in the case of one codebook will converge globally to the mean value of the given input data. Thirdly, the Structured
Self-Organizing Map (SSOM) and modified SSOM are proposed in order to obtain desired codebook locations. Finally,
extensive simulations prove that the modified SSOM is very effective.

Key words : Codebook Construction, Self-organizing Map, LBG-U, Vector Quantization.

1 Introduction

Vector quantization (VQ) [1] is an important technique
for data compression. Roughly speaking, the principle
of vector quantization can be described as follows : Gi-
ven a sample data set D with |D| = N, of n-dimension
data vector &1, &, - -, €N, choose a set C with |C| = M
with M << N, forming n -dimensional codebook vec-
tors wy,ws, - - -, wpr. To transfer any data vector &; to
the receiver, the sender only need transfer the index j
of the codebook wj, which is the nearest codebook to
&; according to curtain distance measure. Usually, the
squared Euclidean distance is adopted.

n

d(a,b) = (a; —b;)> fora,be R" (1)
i=1
On the other hand, the received data differs from the
original. A distortion error is defined to evaluate the
quality of codebook construction.

£eD

where w; stands for the codebook that the sample data
& belongs to.

It can be seen that codebook construction is a key issue
in VQ. Many codebook construction approaches have
been proposed in which one tries to find a codebook
C such that it can minimize the distortion error in (2)
for a given data set D. For random given data set, the
corresponding optimization problem is a complicated

nonlinear problem and only local optimal solution de-
pending on initial codebook selection can be obtained
via standard optimization techniques, such as LBG and
its variants [3]. Recently, an intuitive LBG-U method is
proposed in [4] via a new utility measure. This new ap-
proach can keep the distortion error (2) not increasing
in every iteration and this will guarantee the conver-
gence of the proposed LBG-U algorithm. Simulation
results show the effectiveness of LBG-U though extra
computing burden added.

Also some neural network approaches have been pro-
posed for codebook construction [7, 8, 9, 10]. Among
these algorithms, self-organizing feature map (SOM)
[5] plays an important role since it can detect the co-
debook distribution structure for a given sample data
set without prior knowledge. This feature will help us
construct a reasonable codebook. In [8, 9], the conver-
gence analysis for SOM algorithm was given when the
input data was a sequence of i.i.d. one dimensional ran-
dom variable with uniform distribution. However, the
data distribution is usually unknown in practice, some
of these algorithms are not so useful in practice though
they are very important theoretically. Among all the
neural network algorithms, a critical issue is that the
convergence rate is very slow due to long time learning
though many speedup techniques are proposed [10]. Re-
cently, the idea of quantum classification was proposed
in [11] and it can not be implemented numerically at
present stage [11].

In this paper, a new classification algorithm called
structured Self-Organizing Map (SSOM) will proposed
based on SOM. There are several advantages for SSOM.
Firstly, its initial codebook can be chosen randomly. Se-

condly, the local optimum issue associated with LBG
will be overcome by SSOM. These are due to the cha-
racteristics for SOM. Thirdly, The slow convergence is-
sue will be overcome since LBG will be applied with
obtained codebooks from the modified SOM as initial
values. Theoretically, we can prove that the SOM algo-
rithm will converge to the mean value of the input data
in case of one codebook. This motivates us to stop SOM
learning after the codebook structure has been detec-
ted and this will speed up the process of classification.
One more special character for SOM is that , in the
process of competitive learning, some codebooks may
be dead (which happens often in the SOM algorithm).
In this paper, a new algorithm is designed to modify
SOM and then speed up the learning process.

The structure of this paper is as follows. Some prelimi-
nary results on LBG and SOM are presented in section
2. The convergence analysis of SOM with one codebook
is proved in section 3 for any input data set. The new
SSOM algorithm will be proposed in section 4 which
can deal with dead codebooks after modifying SOM.
In section 5, extensive simulations are impletemented
and compared with SOM and LBG-U. Some conclu-
sions will be given in section 6.

2 Preliminary Results

2.1 The LBG Method

LBG is a famous codebook construction method in the
existing literature. Since both SSOM proposed in this
paper and the recent LBG-U approach are based on
this approach, we will explain LBG in detail here in
order to do comparision with LBG-U in this paper.

For notational convenience, let us denote the set of data
vectors associated with a particular codebook w; as

R ={{ e D|I(¢) =i} 3)

where

I(§) = min{i|(d(w;, §) < d(w;,§)) Vi€ {1,---,M}(L}L)

Now the LBG algorithm can be expressed as

1. Randomly initialize codebooks C from data set
D.

2. Determine the set R; for all w; € C.

3. Calculate the new codebook

wi:LZ§ (for all w; € C) (5)
|Rl| EER;

4. Repeat step2 and step3d until no w; changes any-
more.

LBG algorithm is guaranteed to decrease the distor-
tion error E(D,C). The finial codebook corresponds
to a local minimum of the distortion error function (2)
[1]. Also, It should be noted that one round LBG ite-
ration includes much operations. In order to overcome
the local optimimum issue, a recent LBG-U [4] is pro-
posed and proved to be much better improvement for
LBG with mild extra computing cost. Actually, LBG-U
takes much computing cost compared to LBG since in
each step, several utility measures must calculated and
compared in order to seek the minimum and maximum
vectors from the codebook.

It should be noted that with a better initial codebook,
LBG can achieve much better resuults. This indicates
that it is important to choose a better initial codebook
set in order to achieve better result with LBG. Further,
one can prove that LBG will achieve global optimum
in case of only one codebook.

2.2 The Self-organizing Map

SOM is developed by Kohonen [5]. One of its significant
features is that it can preserve the most important to-
pological and metric relationships of the primary data
items. Actually, SOM is a kind of competitive neural
network and always composed of one or two dimen-
sional array of processing elements or neurons in the
input space. All these neurons receive the same inputs
from external world. Learning is accomplished by ite-
rative operation for unlabled input data. In the trai-
ning process, the neurons evolve in the input space in
order to approximate the distribution function of the
input vector. This structure property is very suitable
for codebook construction, especially for problems with
high dimensional input space. In the current literature,
either the modified SOM is directly used in codebook
construction [12] which is time consuming, or some spe-
cial distribution is required for the input data [8, 9] with
limited applications. In order to explain our new algo-
rithm in this paper, we describe SOM in some detail as
below.

The model of SOM here is a one-dimensional array of
Mnodes. To each neuron C;, i=1,2,---, M, a weight
vector w; = (wi,Wia,- -+, W)t € R™ is defined. Du-
ring learning process, a randomly selected input vector
z € R™ from the training set will be connected to all
neurons in parallel. At the kth step, we select the vec-
tor z to a winning neuron Cj according to the following
competitive rule.

k : k
le = wi!]| = min flo = w{] (6)

In this case, all the neurons within a certain neighbou-
rhood around the winning neuron will participate in the
weight-update process. With random initial wl[o] (0 <
i < n), this learning process can be described by the
following iterative procedure.

w = w4 1 @ — W) (7)

where hgf] is the neighbour-hood function which can be
chosen as Gaussian function [13]

d*(1,i

bl = allezp(- 1) ®
where d(l,1) is the Euclidean distance between the node
I and i, al¥ is the learning-rate factor and ol*! is the
width of the Gaussian function at the iteration k. As
the iteratiion increases, al*! tends to zero and the width
of Kernel function tends to one. In practice, al*! can

be chosen as k
ol = all(1 -) ©)

where T is the total iteration number.
Remark 2.1

1. In the iteration process given in (7), the initial co-
debook can be given reandomly. With the learning
process, the codebook distribution structure can be
obtained gradually. This may provide a better ini-
tial codebook set for LBG.

2. In the learning process, the parameter hgf] will
tend to zero as k — oo. In practice, one can re-
gard it as a very small positiove constant parame-
ter. This is helpful for the proof of convergence of
SOM in the next section.

3. Much work has been done for the convergence
analysis of SOM with known distribution of the
input data [8, 9]. In general case, the convergence
analysis is very hard if not impossible.

3 The Structured Self-Organizing
Map

The codebook construction method based on (7) has
been investigated by several researchers [13, 8]. All
these researchers used this method directly and one
critical issue is time-consuming though some speedup
techniques were proposed [10]. In order to overcome
this shortcoming, we need to investigate the conver-
gence issue when the codebook structure is obtained

after some period learning. In order to describe the
stability of codebook structure explicitly, the following
definition is given.

First, let us give some notations. In each iteration given
by (7), the codebook is denoted as {wg-k]} in kth step,
j=1,2,---, M. Also the set of input data associated
with {wg-k]} is denoted as {Rz[-k]}. With these notations,
the following notations can be given.

Definition 3.1 The SOM given in (7) is said to be

structural Stable if for any initial codebook set {wE-O]},
j=1,2,---, M, there exists some number K such that
for all k,1 > K, we have

{Rzlk]} = {Ry]}> =12 M

Though structural Stable for SOM is very hard to prove
if not impossible, extensive simulations show that SOM
will have this kind of property in practical application
[13]. This motivates us that SOM will provide better
codebook distrbution. Further, with one codebook case
associated with each {ng]}, we will have the following
important result.

3.1 Local Convergence Analysis

Theorem 3.1 Assume that there is only one codebook,
Then the SOM given in (7) will converge to the average
value of all the input data.

Proof With assumption, SOM algorithm can be writ-
ten as

wi ™ = w4+ R -) (10)

where pg-i]
in Remark 2.1, hgf] can be assumed to be a very small
positive constant 7. Now one can rewrite (10) as

, j=1,---, N is the input data. As discussed

wilk + 1] = wilk] + (! —wilk]) (1)
where 0 < 7 < 1. In every epoch k, all the pg-l], j =
1,---, N, will be selected randomly in the iteration (11).
For notational convenience, symbol k+1 doesn’t change
during this steps. After learning process to all the input
data, one will have

wilk + 1] = nple +n(1 =), + -+
n1-pN P+ @ —n)NVwilk] (12)
Where k in pg-i’k] stands for the input data sequence

of the kth epoch. Theresore, after epoch k& + 1,k +
2,---,k+1—1, one will obtain

wilk + 1] = nple™ + (1 =)M + -+

(1 —)N PP+ (1 —)N [k]
wilk +2] = npl ™ 4@ —)l 44
(1 =)N (1= N[k + 1]
wilk + 1) = mplg™ T 1 —)t 4
(1 =)N (1 N[k 41— 1]

Let’s analyze the right part of above equations. Except
for the last term wj;, all other items are the weighted
sums of all the input data. Since p[’] is selected ran-
domly, if the epoch [is large enough, the possibility for
an input vector p; appearing in one of the positions of
N will be same. Adding all above equations together,
one will get

wilk + 1] +w;lk + 2] + - +wilk + 1] =
(1 =)V (wilk] + wilk + 1] + - - + w[k + 1 — 1))

+ ij(%(nﬂw(l —n)+ -
j=1

+n(1 —n)N 1|14

ie.,

(1 —)N (w;[k] + wilk + 1] + - -+ wi[k +1 = 1))
N
o Sonlt= =" (15)

Adding one more item on both sides, one will get

wilk + 1] + wilk + 2] + - - +wilk + 1+ 1] =

(1 —)N (wi[k] + wilk + 1] + - - - + wilk +1])
+HL SN pill = (1 =) (16)
By (16)-(15), one will obtain
wilk+1+1] = —(1=n)M Zp] YN w;[k+1]
(17)

Lety = &[1—(1—-n)"] Ejvzl pj, Then (17) will become

wilk +11 =y +y(L—n)™ +y1 —n)*N +---+

y(1 =) =DV 4 (1 —n)Nwi[k] =
y =0T+ (1=)N K] (18)

Let | — o0, then (

N
1
—(1—U)N];pjm =

18) will be

1 N
wi[k+1] = N ij
=1

(19)

1
—[1
i

due to

1= 50, I-00

0.

Remark 3.1 The theorem indicates that in the case
of one codebook, the SOM will converge to the average
value of all the input data. This is same as LBG, which
will give a global optimum in one codebook case. This
motivates us to stop SOM and calculate the average va-
lue in each {R;} when the codebook structure is stable.

(13)

3.2 Structured Self-Organizing Map

Inspired by the convergence analysis of SOM in one co-
debook case as well as the topological grasping ability
of SOM, we propose a new mechanism called Structu-
red Self-organizing Map (SSOM) according to the idea
of optimization idea for large scale system [14]. The
basic idea is to decompose the original large dimensio-
nal problem into several sub low dimensional problems.
Now the proposed SSOM can be described as below.

SSOM Algorithm

1. Initialize codebook set C randomly. Usually
choose them to be in the center of all the input
data.

2. The SOM algorithm (7) is applied to obtain co-
debook structure.

3. When SOM is Structured stable, implement the
average operation for each {R;} and obtain the
desired codebooks.

We called this algorithm as Structured Self-organizing
Map (SSOM). There are following advantage over LBG
and other existing codebook construction methods ba-
sed on SOM.

1. SSOM usually can reach global or sub-global op-
timum since the SOM in step 1 can comprehend
the strucutral distribution of the required code-
books [13]. This overcomes the local optimum
problem associated with LBG and its variants.

2. After Structural stable of the codebook distribu-
tion structure, average operation is used directly
to create the desired codebook set. This over-
comes the time-consuming issue associated with
conventional SOM algorithms.

Theoretically, SSOM seems very good. The optimiza-
tion technique for large scale system is used here [14].
First we consider the structure distribution of the co-
debooks. Once we find it Structural stable, the simple

average operation is taken instead of the long learning
process associated with SOM.

However, there are several critical issues for practi-
cal implementations. First, during the training process,
some codebooks will never be winner in the competi-
tive iterations and hence never be updated. This is due
to a fact that no input data are within the nearest dis-
tance with those codebooks. These codebooks are cal-
led dead codebooks. These dead codebooks will create
large distortion error, In order to implement the SOM
algorithm smoothly, one need to activate these dead
codebooks for further competition in the learning pro-
cess. The following algorithm is designed to deal with
the dead codebooks, in which one move the dead co-
debooks to a region associated with largest distortion
error. Next, we will describe the idea in detail.

Let us assume that a codebook d; is found to be dead
during the learning process, then it will not be calcu-
lated in the future iterations. In this case, one can find
a codebook c¢; associated with largest distortion error.
Then we move the dead codebook d; to a neighbour of
codebook c; and update both of them with the follo-
wing algorithm.

wilk+1,q = w;lk,q] - ad}!

wilk+1q = w;lk,q)+ad’
wi[k+17v] = UJj[k,'U], VU#(],’I}:I,2,---,’({20)
where « is a small number 0 < a < 1. Denote Nj is the

number of input elements associated with codebook c;
and its elements are x; € R", 1=1,2,---N;. Fur-

ther, ¢ and 6;‘1] can be calculated with the following
formula.

A m m\ NI
q= l|;(wl —cj) =m?x;(xi —cj)

k=1,2,---,n.
N;)
6;‘1] _ ; (xgq] _ cgq])

where ¢ represents the direction with largest deviation
in neighborhood of ¢;. This algorithm will activate the
dead codebooks quickly and speed up the the SOM al-
gorithm. Moreover, this will make the SOM algorithm
to grasp the codebook structure more fairely since the
updated code book will share the distortion error with
the codebook with the largest distortion error. This mo-
dification will be embeded in the step 2 in SSOM. In
the sequal of this paper, the SOM with dead codebook
update will be called modified SOM.

The other potential issue with SSOM is that we do
not know when the modified SOM will be Structural

Stable. This will hinder the applications for the modi-
fied SSOM in practice. Actually, the Structural Stable
will be depend on the input data distribution. So, we
will use the following algorithm in practice to replace
SSOM.

Modified SSOM

1. Initialize codebook C' randomly. Usually choose
them to be in the center of all the input data.

2. The Modified SOM algorithm is applied to
construct codebookstructure

3. With obtained codebooks from step (ii), LBG is
used directly and obtained the desired codebooks.

The modified SSOM can be programmed and imple-
mented easily. The last step is motivated by the follo-
wing facts.

1. The steps of (i) and (ii) will provide a better ini-
tial codebooks for LBG since SSOM will grasp
the structure distribution of the codebooks. LBG
with these codebooks will achieve better results.

2. If the modified SOM in steps of (i) and (ii) sta-
ted in SSOM is Structural Stable, Then the LBG
in step (iii) in modified SSOM will provide same
result as in the step (iii) in SSOM.

These facts imply that modifed SSOM and SSOM will
converge to same codebooks if the modifed SOM is
structural stable. In practice, the modified SSOM will
provide a sub-optimal solution for SSOM.

4 Simulation

In this section, some simulations have been implemen-
ted for the modified SSOM and comparisions have been
made with different existing codebook construction me-
thods. The experiment data used here is from [4], in-
cluding the data outside unit square which is not inclu-
ded in the simulations in [4]. Total 500 two-dimensional
data points are included in the simulations.

4.1 Comparisions with SOM

Here we considere ten different cases in which the code-
book size are (10,20, - - -,100) respectively. In order to
compare the results fairly, all the codebooks are initia-
lized at the same mean value of all the input data. In
each simulation we first implement the modified SOM

(two dead codebooks are found in the processes) and
calculated the root mean square error(RMSE) over all
data points. Then the modified SSOM is implemen-
ted. Here we perform the modified SOM 50000 epoches
(including adjust the two dead codebooks), and 10000
epoches for the modified SSOM. The comparision re-
sults are presented in table 1.

tical problem is that it will be stucked at a local op-
timum. Recently, the LBG-U was proposed and over-
come the local optimum issue. Simulations have proved
that LBG-U is much better than LBG with mild addi-
tional computation costs [4]. Actually, LBG-U will use
LBG repeatedly and its computation cost will grow si-
gnificantly with the sizes of input data and codebook.

In this section, we will use the same input data set as
in the previous sub-section. Also ten cases for different
codebook size are considered for LBG, LBG-U and the
modified SSOM. The coparision resutls are listed in

size | RMSE =+ stddev | RMSE =+ stddev | Gain
(SOM) (SSOM)
10 | 0.0820 + 15% 0.0434 + 1% 90%
20 | 0.0397 £ 5% 0.0328 + 3% 21%
30 | 0.0358 + 3% 0.0273 + 3% 30%
40 | 0.0320 £+ 3% 0.0235 + 2% 36%
50 | 0.0302 + 4% 0.0205 + 3% 47%
60 | 0.0293 £+ 3% 0.0186 + 3% 57%
70 | 0.0284 + 3% 0.0169 + 2% 68%
80 | 0.0271 £+ 5% 0.0159 + 4% 1%
90 | 0.0263 + 6% 0.0147 + 3% 8%
100 | 0.0259+4% 0.0138 + 2% 87%

table 2 below.

Table 1. Comparison of SOM and Modified SSOM

The mean values of RMSE after implementing the mo-
dified SOM for 50000 epoches and that after implemen-
ting the modified SSOM for 10000 epoches are plotted
in Figure 1. Their codebook distrbutions with twenty
codebooks are plotted in Figure 2 and Figure 3 respec-
tively.

1. From table 1, one can see that though we imple-
ment the modified SSOM much less iterations,
the final results are much better due to the im-
plementation of LBG. This fact indicates that the
final stage in the proposed algorithm not only
speed up the converegence rate but also improves
the performance significantly.

2. From Figure 1, one can see that the mean values
of RMSE by implementing the modified SOM
100000 epoches and 50000 epoches do not change
so much. These values are reduced significantly
via the modified SSOM. This indicates that the
modified SSOM can produce much better results
than the modified SOM.

3. From Figure 2 and Figure 3, one can see that
the codebook distribution is different in the case
of twenty codebooks. The codebook distribution
obtained via the modified SSOM is more reaso-
nable.

4.2 Comparisions with LBG and LBG-
U

The LBU is a popular codebook construction approach
[1] and it has been used widely in practice [2]. One cri-

size | RMSE + std- | RMSE + std- | RMSE =+ std-
dev (LBG) dev (LBG-U) dev (SSOM)
10 | 0.0642 + 25% | 0.0453 + 13% | 0.0434 £ 1%
20 0.0367 + 17% 0.0322 £ 1% 0.0328 + 3%
30 | 0.0302 + 18% | 0.0265 + 2% 0.0273 + 3%
40 0.0252 + 4% 0.0224 + 1% 0.0235 £+ 2%
50 | 0.0224 £+ 5% 0.0198 + 1% 0.0205 + 3%
60 | 0.0199 + 4% 0.0177 + 2% 0.0186 + 3%
70 | 0.0184 + 5% 0.0160 + 2% 0.0169 + 2%
80 | 0.0168 + 4% 0.0147 + 1% 0.0159 + 4%
90 | 0.0156 + 3% 0.0135 + 1% 0.0147 + 3%
100 | 0.0145 + 3% 0.0125 + 2% 0.0138 + 2%

Table 2. Comparisons of LBG, LBG-U and SSOM

Also the mean values of RMSE for LBG, LBG-U [4]
and the modified SSOM are illustrated graphically in
Figure 4.

It can be seen from table 2 and Figure 4 that the mo-
dified SSOM can improve LBG significantly. It is much
better than LBG-U in the case of ten codebooks. With
more codebooks, the differences among LBG, LBG-U
and SSOM are becoming smaller.

Also from the codebook distribution in Figure 3 for the
modified SSOM and Figures in [4] for LBG-U, one can
see that the codebook distribution structures for LBG-
U and the modified SSOM are different. This indicates
that either LBG-U or the modified SSOM is not glo-
bal optimal and there is still possible to improve them.
This will motivate us to investigate the convergence
property further for the modified SSOM in the future.

5 Conclusions

In this paper, a new codebook construction method
SSOM was proposed based on SOM neural network.
This new algorithm can cope with any input data and
proved to be much better than conventional LBG ap-
proach and SOM. First it used the SOM property to
grasp the data structure distribution. This is very im-
portant and it can overcome local optimum issue as-

sociated with LBG. Also the SOM is modified in this
paper to deal with the dead codebook issue in the lear-
ning process. Further, After the codebook is stable, the
averaging operation was taken or LBG is applied due to
a fact that the modified SOM with one codebook will
converge to its mean value of input data. This opera-
tion overcomes the time-consuming shortcomings asso-
ciated with all the neoural network algorithms. Simu-

lation results showed the effectiveness of the modified
SSOM.

Though the modified SSOM approach is very effective.
It is still possible to improve it via adjusting the code-
book locations from local region point of view. Since
it may be hard for the modified SOM to be Structu-
ral Stable as defined in this paper. In broad sense, the
regional structural stable will be more applicable and
may bring better performance. This is under our cur-
rent investigation.

Références

[1] Gray. R. M., Vector quantization , IEEE ASSP
Magazine, 1984, pp. 4-29.

[2] R. M. Gray, Vector Quantization and Signal Com-
pression, Kluwer Academic Press, 1992.

[3] Macqueen.J., Some methods for classification and
analysis of multivariate observations, Volume 1 of
Proceedings of the Fifth Berkely Symposium on
Mathematical statistics and probability , Berkely,
1967.University of California Press. pp. 281-297

[4] Fritzke. B., The LBG-U method for wvector
quantization-an improvement over LBG inspired
from neural networks, Neural Processing Letter,
vol. 5, no. 1, 1997, pp. 35-45.

[5] Kohonen. T., Self-organized formation of topologi-

cally correct feature maps , Biological Cybernetics,
vol.43, 1982, pp 59-69.

[6] Linde.y., Buzo. A. and Gray. R. M., An algorithm
for vector quantizer design, IEEE Transactions on
Communication, vol. 28, 1980, pp. 84-95.

[7] T. M. Martinetz and K. J. Schulten. Topology re-
presenting networks. Neural Networks, 7(3), 1994,
pp- 512 :-522, 1994.

[8] Sun Y., On Quantization error of self-organizing
map network, Neurocomputing, 34 (2000), pp. 169-
193.

9] Z. P. Lo, Y. Yu, B. Bavarian, Analysis of the
convergence properties of topology preserving neu-
ral networks, IEEE Trans. Neural Networks 4
(March, 1993), pp. 207-220.

[10] B. Frizke, A growing neural gas network learns
topologies, In G. Tesauro, D. S. Touretzky and
T. K. Leen, ediotrs,Advances in Neural Informa-
tion Processing Systems 7, pp. 625-632. MIT Press,
Cambridge MA 1995.

[11] Hong Yan, Quantum Classification Algorithms for
Signal and Image Processing, 2000 International
Workshop on Multimedia Data Storage, Retrial,
Integration and Application, 2000, pp. 75-80.

[12] Lin, J. K., D. G. Grier and J. D. Cowan, Faith-
ful representation of separable distributions, Neu-
ral Computation, 1997. vol. 9, pp. 1035-1320.

[13] T. Kohonen, Self-Organization and Associative
Memory, Springer Series in Information Sciences,
Springer, New York, 1988.

[14] M. Jamshidi, Large-Scale Systems : Modeling,
Control and Fuzzy, North-Holland Series in Sys-
tem Science and Engineering, North-Holland, New
York, 1996.

[15] B. Fritzke. Incremental learning of local linear
mappings, In F. Fogelman and P. Gallinari, edi-
tors, ICANN’95 : International Conference on
Artificial Neural Networks, pages 217-222, Paris,
France, 1995b. EC2 and Cie.

Fi1c. 1 — >+’SOM (10000 epoches);*’

*+
*+
*+

*+
*+

L
20 30 40 50
number of codebook

epoches) ;’.” SSOM (10000 epoches)

12

0.8

06

0.4

0.2

12

08

0.6

0.4

0.2

70 80 90 100

SOM (50000

0.6 0.7 08 0.9

0.6 0.7 0.8 0.9

F1G. 3 — Data set and codebooks (SSOM)

T T T T T T T T T T
*
+
*
+
L * 1
+
*
Tk
L + * |
+ *
X
¥ i .
.
10 20 30 40 70 80 9 100

Fic. 4 - % LBG;’LBG-U; '+’ SSOM

110

