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Abstract: - Application of fuzzy logic to the well known “ball on beam” motion control problem is
reported. Comparison results indicate clearly superior performance of the fuzzy controller to that of the
traditional PID controller. The process of control synthesis is summarised.
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1 Introduction

As illustrated in Figure 1, the objective is to
control position X of the ball along a (grooved)
beam by adjusting the beam tilt «. This primary
task is achieved through the motor shaft
position control that delivers the appropriate
angle O for the required tilt o« — as shown in the
Appendix |, the two angles are directly
proportional when © is “small”. The
subdivision into two independent tasks or
subsystems implied hereby is possible because
the motor dynamics can be made to be much
faster then the ball dynamics and the transients
of the former are then not seen by the latter.

The conventional wisdom would be to
derive a mathematical model for both sub-
systems and then design two PID controllers to
satisfy some design requirements specified in
advance. Indeed, such mathematical modelling
has been carried out (in Appendix I). However,
not only that it assumes incorrectly that the
angle 0 is “small” (hence 0=sin0) despite its
160° range (+80°), but nonlinear vibrations of
the beam as well as ball hopping on the beam
are difficult to account. In order to avoid
(minimise) the occurrence of these effects, the
actually calculated controller parameters had to
be replaced by those adjusted based on the
engineering insight and intuition. It was then
decided to build a fuzzy controller for the ball-
beam subsystem that may be better suited to
such insight and intuition.
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Figure 1: System kinematics

2 Motion System Description and
Implementation of Fuzzy Logic

The motion system includes a beam on which a
stainless steel ball can roll (Figure 1). The beam
tilt o« depends on the motor shaft position. The
beam consists of two rails: one is a nickel-
chromium wire-wound resistor and the other
rail is a steel rod. As the ball rolls on such
tracks, it acts like a wiper of a potentiometer,
providing the voltage feedback on its position
along the track (and forming the “linear sensor”
in Figure 1).

Fuzzy rules used are of the form:
if

the ball is far to the right (large positive

position error),

and if

the high ball velocity is away from the
desired destination (high negative velocity),

then



the beam should be inclined severely by
raising its driven end significantly.

Velocity information is obtained by numeric
differentiation of the position feedback.

A total of 36 such rules and input conditions
have been identified for the ball velocity and
position error as there are two fuzzy variables,
ball position and velocity, with six partitions
each (high, medium and small, positive and
negative with respect to the set point). Beam tilt
is the output variable from the ball-beam fuzzy
subsystem. It represents the input (set) point for
the PID control of the motor dynamics that is to
deliver the required beam-tilt based on the
feedback from the sensor labelled “angular
sensor” in Figure 1. As the PID motor position
control is a rather routine task, only the ball-
beam dynamics is discussed further.

It is apparent that the problem is anti-
symmetric with respect to the zero position
error point: changing the sign of both fuzzy
variables (position and velocity) requires the
exactly opposite beam tilt. Hence, only half of
the fuzzy rules (18=36/2) had to be used
explicitly: those for the position error positive
were chosen. Any input condition with the
negative position error was mapped into its
counterpart with this error positive and with
altered velocity direction, while flagging that
the sign of the resulting beam tilt must then be
altered. Such crisp reasoning is carried out by
the following simple code upon obtaining each
new ball position and velocity feedback and by
multiplying the output tilt by the variable called
“Mul ti pl yQut put ” that equals +1 or -1:

| F PositionError < O THEN
Posi ti onError =-PositionError
Vel ocity = -Velocity
Mul tiplyQutput = -1
ELSE
Mul tiplyQutput =1
END | F
Full list of the eighteen fuzzy rules is shown
in Table 1 (next page).
Membership functions for the input variables,
and consequence levels are determined using
intuition and test trials. A rough guide used in
this process is summarised next:
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Position and Velocity

a) The partition for "low velocity" reflects total
unreliability of the calculated velocity in the
150 region - fuzzy rules then do not utilise
the motion direction information.
Magnitudes above 50, with gradual increase
in confidence, indicate the motion direction
("Medium velocity™).

b) The "med." and "high" velocity partitions
reflect the need for smoothness of the
defuzzified command signal (output) with
the gradual increase in velocity magnitude
(the tilts are functions of the consequence
levels).

c) Forthe"small" and "medium" position error,
as well as the "down low" and "down low
medium" consequence levels, final settling
of the ball was observed. Consequence
number 9 (horizontal track) is used implicitly
when none of the rules are called upon :
fuzzification of the position error did not
include its entire domain as the region from
-10 to +10 does not fall under any fuzzy
partition. This region is further increased by
the dead band of the drive system which does
not respond to small inputs. The objective
was to establish a zone within which the ball
would stop by itself along the horizontal
track when the ball enters this zone with the
"medium” velocity. The control continues
only if the ball overshoots to the other end.
This called for the "med" velocity partition
to be narrow around such ideal velocity for
entering the zone (z velocity noise).

d) For the "med"/"big" position interface,
system dumping was studied : by classifying
the position error as "big" sooner, more agile
control is obtained.



Table 1: Fuzzy Rules

INPUT CONDITION | CONSEQUENCE(required output IeveI)I
Index| Position Velocity Required Move for the Index of
Error Driven End of the Track Output
1 High + | High + Down Low Medium 3
2 High + | Med. + Down Low Medium 3
3 High+ | Low + Down High 1
4 High+ | Low - Down High 1
5 High + | Med. - Down High 1
6 High + | High - Down High 1
7 Med. + | High + Up High 8
8 Med. + | Med. + Up Medium 7
9 Med. + | Low + Down Low Medium 3
10 | Med.+| Low- Down Low Medium 3
11 | Med. +| Med. - Down High 1
12 | Med. +| High- Down High 1
13 | Low+ | High+ Up High 8
14 | Low+ | Med. + Up Low Medium 6
15 | Low+ | Low+ Down Low 4
16 | Low+ | Low - Down Low 4
17 | Low+ | Med. - Down Medium 2
18 | Low+ | High- Down High 1

It appears that the output state number 5 (up
low) is not used as none of the 18 fuzzy rules
calls for it. It should be noted, however, that
this state is used with negative position error
for input conditions corresponding to those
positive ones which call for consequence 4
(down low). This is in connection to the switch
from 36 to 18 rules as explained previously. An
additional “do nothing” output state is used
implicitly when none of the other rules apply, as
indicated by the deliberately built-in dead band
apparent in the middle of the membership
function for position-error in Figure 2.

3 System Response and Comparison
to That with a PID Controller

System response with the fuzzy controller is
shown in Figure 3aand 3b. The large deviations
observed are the manually introduced
disturbances. The superimposed graphs in both
pertain to the motor shaft position feedback
from the *“angular sensor” in Figure 1.

Significantly shorter settlement time can be
observed than with the PID controller shown in
Figure 4. While a predictably oscillatory
character with the PID controller is easily
noticeable, each run with the fuzzy controller is



different, with the transient becoming
unpredictable and subject to aseemingly chance
outcome once the deviation from the set-point
has dropped in magnitude to a minor value.
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Figure 3: Sample System Response with
Fuzzy Controller. Disturbances Were
Introduced Manually. Shown Superimposed to
the Ball-position Signal Is the Motor-shaft
Position Feedback.
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Figure 4: Response with the PID Controller.

4 Conclusions

Two separate algorithms, for PID and fuzzy
control, are implemented on the same “ball on
beam” motion system. The original motivation
was to illustrates to the students one
implementation of a PID control. However,
because the mathematical model does not
accurately represent the system, ball hopping
off the vibrating beam in particular, the
rigorously calculated controller parameters
could not be applied. Intuitively tuned values
were used instead. This lack of rigour motivated
the author to develop a fuzzy controller for the
same system as it can better capture the
intuitive insight involved. Application of the
two controllers in a class of engineering
students is shown in Appendix II.

Appendix I: PID Controller

The mathematical model is derived in three
parts: 1) x-a ; 2) «-0 ; 3) 6-motor voltage.

1) x-a relationship

For the ball with mass m, moment of inertia J
and radius R, it is :

mg sinoe = mx + F

RF = oJ = 32
R

From the above, one gets :

. U §
mg s = mx + xX—-
R2



As forthe ball " = %mR , it follows :

mg sing = %mx

and forsmall o : X = %ga .

The corresponding transfer function is:
Xs) _ 5 8
(X(S) 7 s

ball along the track tilted o radians.

2) -0 relationship

Assumption : with change in 0 within the range
of £60° or so, the rotation of the rod connecting
the track and the gear controlling it is small
(since the rod is>r).

Implication: both ends of the rod move
approximately equal amounts in the vertical
direction - since cos(small rod rotation)=1.

where x is the position of the

L

Hence, r sin® = L sinee and, for small 6

(although it is not small), 0 = £oz .

r

The third part of the mathematical model is
the well known mathematical model of a
permanent magnet DC motor.

Two PD controllers are then designed. The
output of one controller is the required angle ©
that is needed to affect the ball, and the other
determines the output voltage for the motor so
that this © can be delivered. The P and D
constants for two controllers, are (respectively):
0.312, 0299, 5.79 and 0.22 (for the design
requirement of 0.707 for the damping ratio and
peak time of 3 s for the ball and 0.2 for the
motor.

Appendix I1: Class Demonstration

The author brings the actual hardware (and
computer) to the classroom for the
demonstration. A number of students are then
invited to control the ball position manually by
rotating a wheel that affects the slope of the
beam. This manual approach by a student
volunteer is then named “intelligent control”.
Students quickly rename it “unintelligent
control” (or even worse) because no student has
yet succeeded to stabilize the ball. Students who
make the loudest remarks are then invited to try
their own skills. By realising their own inability
to make any headway, students gain respect for
the subsequent quick and seemingly flawless
performance by the PID control algorithm — no
amount of talking could achieve the same
effect. Weeks later, the merit of automation as
being much more than merely a means of labour
replacement, even if inexpensive labour force is
abundant, sinks in far more easily.

After the wave of “PID is good” excitement
has calmed down, the author points to the
students the undesirable aspects of the system
performance. He also points to the difference
between the controller parameters used and
those predicted by calculations. They then
jointly try to evaluate (i) how accurately they
know some of the “constants” in the
mathematical model, (ii) how inaccurate that
model actually is despite its complexity, (iii)
whether they had an alternative to the
approximations introduced and (iv) how
variable the system “constants” are during the
motion. They actually set the controller
parameters as determined by calculation, and
observe very poor performance due to the cause
not included in the “sound” model. They then
question the merit of doing the seemingly
precise modelling and PID system synthesis
only to plug into it at the end quite rough
estimates of the system constants and to adjust
the final results based on engineering insight.
While at this stage PID is still not considered
“bad”, this has set a stage for the fuzzy control
approach that starts with such engineering
insight in the first place and does not maintain
the notion of being very exact.



Another wave of excitement follows when
fuzzy control is demonstrated on the same
problem. As the ball goes directly to where it is
supposed to, “no, fuzzy is good” is heard. Once
this second wave of excitement has calmed
down, they try to identify what the key factors
were in making the whole approach work in this
particular case and how this relatively complex
problem was partitioned into simpler subsets.
They then move to the negative aspects. The
author brings to the students’ attention the
shimming under the leg of the table and where
the need for the table to be horizontal came
from — something not a problem for the PID
algorithm. He points that, while seemingly alike
due to a dominant characteristic, each run is
different, unpredictable and influenced by an
one chance outcome. He reveals that the control
is essentially limited to a set of conditions it had
been fine-tuned for, which is far more
restrictive than what the PID algorithm was able
to accommodate. They then go back to PID.

With PID running for the second time
around, the author varies controller parameters
on-line trying to identify the “optimal” values
for different stages of the ball transient on its
way to the final destination and for the steady
state thereafter. While the traditional design
wisdom would be to finally select a single value
for each parameter and thereby strike a
compromise between contradictory design
requirements, they instead verbally articulate
rules how those parameters should ideally vary
during the process that they observe repeatedly.
In essence, these are fuzzy rules, that bring
them back to the fuzzy control, but this time
fuzzy is used to adjust parameters of the PID
on-line to suit each stage of the process — rather
than to firmly fix them based on some
compromise.

The author and his students conclude by
realising that they made two full circles across
different methods and ended up with a hybrid
that combines useful features of them all.



