
Fuzzy Logic-Based Natural Language Processing and Its            
Application to Speech Recognition 

 
JIPING SUN, FAKHRI KARRAY, OTMAN BASIR & MOHAMED KAMEL 

Department of Electrical and Computer Engineering 
University of Waterloo, Waterloo 

Ontario, N2L 3G1, Canada 

 
Abstract: In this paper we describe a fuzzy logic-based language processing method, which is 
applied to speech recognition. Our purpose is to create a system that can learn from a linguistic 
corpus the fuzzy semantic relations between the concepts represented by words and use such 
relations to process the word sequences generated by speech recognition systems. In particular, 
the system will be able to predict the words failed to be recognized by a speech recognition 
system. This will help to increase the accuracy of a speech recognition system. This will also 
serve as the first stage of deep semantic processing of speech recognition results by providing 
“semantic relatedness” between the recognized words. We report the fuzzy inference rule 
learning system, which we have developed and also report the experimental results based on the 
system.  
 
Key-words:  Fuzzy logic, Natural Language Analysis, Speech Recognition, Corpus Linguistics. 
 
1 Introduction  
 
The complexity of natural language has made 
people apply various kinds of “soft” computing 
techniques for its analysis. Besides statistical, 
connectionist and other approaches, the fuzzy 
logic-based approach provides another 
alternative for effective natural language 
analysis. It is commonly recognized that many 
phenomena in natural language lend themselves 
to descriptions by fuzzy mathematics, including 
fuzzy sets, fuzzy relations and fuzzy logic. By 
defining a fuzzy logic system and acquiring 
proper rules, we hope that difficulties in 
analysis of speech can be alleviated. 
     As far as reference is concerned, words and 
their meanings (the referred objects or their 
measurements in the world) are often in a fuzzy 
relationship.  This is important for grounded 
systems such as controlling robots. On the other 
hand, for the mainstream of NLP research, 
words themselves are the objects of description. 
It is natural to think that the language external 
fuzziness could be interpolated into language 
and fuzzy mathematical approaches are 

appropriate tools in solving problems.  
     Fuzzy logic has been successfully applied to 
the description of words’ meanings as related to 
language external phenomena. Fuzzy linguistic 
descriptors have been used in control systems, 
in which mappings can be established between 
fuzzy linguistic terms and physical quantities.  
“Hot”, “cold”, for example, can serve as labels 
for fuzzy sets to which temperature readings 
can be mapped into membership degrees.  
Fuzzy logic rules for control systems can 
accept fuzzy descriptors in both the premises 
and the consequents to simulate human-like 
inferencing. Another case of fuzzy application 
is natural language-driven database search. 
Here the semantics of words can be expressed 
as fuzzy membership functions for certain 
database search keys [Medina, Vila]. A 
language internal fuzzy treatment is found in 
[Subasic], in which affect types of certain 
words in documents are dealt with as fuzzy 
sets. Words representing emotions are mapped 
to these fuzzy sets. The difference between this 
case and the previous two is that the latter dealt 
with language internal fuzzy phenomena. 



Instead of mapping physical phenomena to 
words, which serve as fuzzy set labels, words 
themselves are the set members of affect types.  
How can this language internal phenomena be 
dealt with in a more general way, for example, 
in a parsing and language processing system, is 
the main topic of this paper. 
      In linguistic research there has always been 
tendency to treat linguistic categories and 
structures as fuzzy entities. This is strongly 
reflected in the cognitive grammar tradition. In 
that tradition, prototypes of natural categories 
and lexical semantics are considered as fuzzy 
and gradient in membership assignment. In the 
1960s, Bolinger did research on fuzzy grammar 
[Bolinger]. Corrigan studies natural categories 
and the related issues reflected in fuzzy 
grammar.  Continuums in language and “fuzzy” 
degrees of subjecthood, nouniness, 
adjectiveness, etc. are studied by Comrie. 
Matthew views grammatical categories as 
continuous or non-discrete. Many functionalists 
think of linguistic categories as gradient and 
fuzzy [Comrie, Givon, Langacker, Lakoff]. 
      Section 2 of the paper reviews problems 
presented by speech recognition systems and 
defines the fuzzy logic system and explains 
how it is applied to speech recognizer results. 
Section 3 describes knowledge acquisition 
procedures for collecting information for the 
logic system. Section 4 describes some 
experimental results. We then conclude with 
suggestions for future work. 
 

2 A Fuzzy Logic for Robust 
Processing of Speech Recognition 
Data 
 
2.1 Problems presented by speech 
recognition systems 
Our main goal is the efficient processing of 
speech recognition output. We consider the 
major problems presented by such data. We 
apply the speech recognition system on 
restricted domains. This means the vocabulary 
size and senses and syntactic constructs are 
restricted. Here are some often-encountered 
phenomena in a domain-constrained speech 
system: 
 

• Out-of-vocabulary words. A user may 
speak words that are not contained in the 
system lexicon. For example, in the air 
travel domain, a system may have only 
American cities while a user may ask for 
flight information about other cities in the 
world. 

 
• Speech recognizer errors. This may match a 

word into a wrong word, insert or delete a 
word, etc. Here is an example from 
recognition tests. Reference: “I NEED TO GET 
FROM PHILADELPHIA PENNSYLVANIA TO BOSTON 

MASSACHUSETTS”; Recognition: “I NEED TO 
GET FROM PHILADELPHIA AND STOPPING AT TO 

BOSTON MASSACHUSETTS”. We will describe 
fuzzy inference strategies for dealing with 
such a problem. 

 
• Flexible structures. The user may use 

expressions that the system's grammar does 
not cover. For instance, while the system 
may have the expression “a flight from 
Atlanta to Boston”, a user's expression “a 
flight originating in Atlanta, destination 
Boston” may be novel to the system. 

 
• Disfluency. False start, re-phrasing, 

repeated words, mis-pronounced words, 
half-pronounced words, filled pauses, etc. 
These could make the system confused 
about word semantic relations. 

 
2.2 The fuzzy logic system 
 
The fuzzy logic system has two major tasks. 
First, it evaluates whether a recognized word is 
semantically appropriate with respect to the 
whole recognized sentence. Second, it applies a 
set of fuzzy inferencing rules to predict 
possible missing words given a correctly 
recognized word evaluated in the first task. The 
major information used is word co-occurrence 
data, which is transferred to fuzzy logic 
knowledge. 
 
A fuzzy semantic logic is a three-tuple  
L(V,F,RL(V,F,R), where 
 
    VV is a set of linguistic vocabulary, 
    FF is a set of vocabulary features, 



    RR is a set of inference rules. 
 
A member in VV is called a word. A word is of 
the form word(f1=v1 ... fn=vn).  That is to say, a 
word is represented by a feature-vector with 
features from FF and in symbolic values.  
 
A member in FF is a symbol representing a 
feature. In our system, we use the feature set 
{SYNTACTIC-TYPE, SEMANTIC-TYPE, PHRASE-
TYPE and CONTEXT-WORDS}. 
  
The set RR consists of two types of fuzzy 
inferencing rules: evaluation rule and 
prediction rule. The evaluation rule matches a 
word to its context and decides whether the 
word is correctly recognized; a prediction rule 
predicts possible missing words based on a 
successfully evaluated word. Both of these 
rules apply the information in word feature 
vectors. For each word X, if its feature vector 
contains a context word Y, we denote this by a 
co-occurrence X * Y, meaning that when word 
X is used, word Y is likely to be used. As every 
word has also syntactic and semantic types, 
relations can be generalized from words to their 
semantic types and further to their syntactic 
types. The type features of a word is denoted as 
X:T. Given the above denotations, the 
evaluation and prediction rules are expressed as 
follows. 
 
    E-rule: X * Y ∧ X ∧ Y → incE(X) 
    E-rule: X * Y ∧ X ∧ not(Y) → decE(X) 
 
The above two rules mean that when word X is 
found in the recognition, and if Y co-occurs 
with X in the training data, then increase or 
decrease the evaluation of X depending on if Y 
is also found in the recognition. The eventual 
evaluation of a word sums up the individual 
increases and decreases for all its context 
words.   
 
    P-rule: eval(X) > γ ∧ X * Y → incP(Y) 
    P-rule: eval(X) < γ ∧ X * Y → decP(Y) 
 
In the above prediction rules, if the evaluation 
of X is over a threshold γ, then increase the 
prediction strength of Y, if Y is in its co-

occurrence vector. 
 

3 Knowledge Acquisition for a 
Fuzzy Logic  
 
Developing a powerful logic system requires 
large amounts of knowledge to be acquired 
either from knowledge experts or from 
automatic knowledge acquisition processes. We 
have developed a number of procedures to 
automatically extract information for a fuzzy 
semantic logic. 
  
3.1 Automatic acquisition of semantic 
types 
 
Given a general semantic lexicon (e.g. 
WorldNet) [Fellbaum], it is possible to classify 
the words in a given corpus into semantic 
groups specific to the domain of the corpus. We 
have used a simple method utilizing a given 
corpus and WorldNet to discover interesting 
semantic types. The basic idea consists of the 
following points: 
• The WorldNet is a huge hierarchical 

structure of words, dividing them into 
various levels of abstraction for semantic 
grouping. Words in WorldNet are highly 
polysemous. 

 
• In a restricted domain (e.g. air travel), we 

prefer a flat semantic categorization and 
most of the words should have one or two 
different meanings. 

• We decided to use the third level 
abstraction from the word up for semantic 
grouping. This level generally corresponds 
to the “basic” cognitive categories. Some of 
the examples are “time-period”, “city”, 
“meal”, “motion”, “cost”, etc.  

• We assume that for a semantic category 
interesting to a domain, it should have a 
high frequency of occurring in the corpus.  
So we find all the semantic types of all the 
word tokens in the corpus and then select a 
number of high frequency ones. 

• The above procedure is automatically 
carried out. Eventually we have got a 
lexicon with words carrying interesting 
semantic types. We experimented with the 



ATIS corpus [Rudnicky]. This corpus has 
152k word tokens (1571 word types). By 
the above procedure, 1073 word types are 
assigned to 66 semantic types. 

 
3.2 Automatic acquisition of syntactic 
and phrase types 
 
Besides semantic typing, a word is also defined 
by its syntactic typing and phrasal typing. For 
syntactic typing, we used a tree-based tagger 
trained by Penn Treebank. After automatic 
tagging, a set of one-level chunking rules are 
applied to the tag sequence and parsed it to 
three types of phrases: verb phrase, noun phrase 
and prepositional phrase. This parser is highly 
efficient and reliable. The ATIS corpus 
contains 13k sentences and all of them were 
parsed. Random checking of 100 sentences 
showed above 97% of correctness in the 
chunking. 
     After the sentences were chunked into 
phrases, each phrase was further typed by the 
semantic type of its “core” word. The core 
word is decided by the following criteria: 
 
• For verb phrase, the main verb is the core 

word. 
• For prepositional phrase and noun phrase, 

the last noun is the core word. 
• For a Be+adjective phrase, the last 

adjective is the core word. 
 
Following the acquisition tasks, we obtained 66 
semantic types, 12 syntactic types: noun, verb, 
be-verb, adjective, adverb, conjunction, 
interjection, auxiliary, numeral, pronoun, 
preposition, proper-noun and 3 syntactic phrase 
types: noun phrase, verb phrase and 
prepositional phrase. Based on this, we derived 
the semantic phrase types of the ATIS corpus. 
From the training section of the ATIS corpus 
we derived 98 semantic phrase types. A 
semantic phrase type is the semantic type of the 
core word differentiated by its syntactic type.  
The following list shows some of the most 
frequent phrase types and their frequencies in 
the corpus. 

• City, 12108 
• Flight, 5774 

• Time, 3574  
• Person, 3371 
• Number, 3344 
• Communicate, 1948 
• Desire, 1947 
• Leave, 1665 
• Commercial-document, 1421 
• Airline, 1230 
• Arrival, 839 
• Taxonomic-group, 805 
• Motion, 788  

 
Finally we constructed word definitions for the 
ATIS corpus, based on the syntactic-type, 
semantic-type and phrase-type information. 
The context-word vector is constructed for each 
word with respect to the phrase type it is used 
in. The context word is divided into 4 groups: 
(1) the words on its left side in the phrase, (2) 
the words on its right side in the phrase, (3) the 
words in the left neighbor phrase and (4) the 
words in the right neighbor phrase. A neighbor 
phrase is differentiated by syntactic phrase 
type. The word definition structure is as 
follows: 
 

Word Vector:  
    Semantic-Type  
    Syntactic-Type 
    Phrase-Type 
    Left-words-in-phrase 
    Right-words-in-phrase 

Words-in-left-neighbor-phrase 
Words-in-right-neighbor-phrase 

 
Based on the word vector, the evaluation 
increment of e-rules for a phrase type p is 
defined by 
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Xp is the number of context words recognized; 
Np is the total number of context words. β is 
control parameter between 1 and Np. wp is 
weighting parameter for the phrase type p of 
the evaluated word, which is a function of 
relative importance of the word, for example, 
its frequency and context complexity. 



4 Experimental Results 
 
As described in section 3 and 4, we 
implemented an unsupervised learning system 
for the acquisition of fuzzy rules. The basic 
data we have used consists of the WorldNet 
semantic lexicon and the ATIS corpus.  The 
tasks we chose in our experiment are the 
evaluation of recognized words and of possible 
missing words. The input came from speech 
recognition output containing errors. In our 
experiment, we used results from a recognition 
system on the 1967 sentences in the ATIS test 
section. The word recognition accuracy for 
these sentences is 81.90%. The sentence 
recognition accuracy is 35.13%. 
      The fuzzy inferencing rules used the word 
definition vectors trained from the ATIS 
training section. Depending on different levels 
of evaluation and prediction threshold, for each 
recognized sentence, the system can make more 
or less predictions of missing words. We then 
calculated how well these predicted words can 
cover the words in the reference sentences. The 
coverage then is contrasted with the ratio 
between the quantity of the predicted words 
and the original language model size. One use 
of the prediction is to create a dynamic 
language model and use it to do a re-scoring of 
the sentences, either through a second time 
recognition or through a semantic 
interpretation. Therefore, the indicator of 
performance of our system is to achieve 
maximal coverage and minimal model ratio. 
Table 1 shows the performance achieved with 
low evaluation threshold  (γ < 0.2). 
 
 
 
 
 
 
 
  
  
 
 
 
In the above tests, we tested different stoplist 
size. By using more stop words, we could 

achieve larger model reduction without 
affecting coverage much. In Table 2, we 
increased the evaluation threshold to various 
degrees. By doing so, we could further reduce 
the size of the predicted words with a moderate 
loss of coverage. 
   
 
  
 
 
 
 
 
 
 
 
 
 
 
From the above test results we found that using 
this fuzzy-logic based language processing 
system, we can predict up to 96 percent of the 
words truly said by the user in a dynamic 
language model with the model size reduced to 
less than 1/3 of the original model. 
  

5 Conclusions and Future Work 
 
In this paper we outlined the principles and 
constructs of a fuzzy logic-based NLP system 
and have illustrated it with experimental 
results. We have shown that for robust natural 
language processing to succeed, soft computing 
strategies are needed at various stages of the  
processing. In particular, we have shown that 
fuzzy logic is one promising direction in this 
respect. In future research several directions are 
worth exploring. First, better knowledge 
acquisition methods need to be developed so 
that a system can collect more information in 
efficient ways. Second, discourse information 
is desirable to be incorporated into the sentence 
understanding process. This is important 
because in many situations it is the usage of the 
sentence in the discourse context that decides 
precise interpretations of its semantics. In this 
perspective we can explore the direction of 
discourse-driven dynamic inference, which 
may modify the featural structures of words 

Table 1. Word prediction results tested with low           
evaluation threshold. Test corpus = 22.26k words.    
Recognition accuracy = 81.90%. Original language    
model size = 1282 words. 

 Fuzzy Logic-Based Word Prediction Results 1  

Uncovered 
words 

Coverage 
percent 

Average 
model size 

Model 
reduction 

Stop 
words 

196 w. 99.11 % 840 w. 34.5 % 0 w. 
286 w. 98.72 % 615 w. 52.1 % 43 w. 
300 w. 98.65 % 599 w. 53.3 % 291 w. 

 

Table 2. Word prediction results tested with 
increasingly high evaluation thresholds. 

     Fuzzy Logic-Based Word Prediction Results 2 
Uncovered 

words 
Coverage 
percent 

Average 
model size 

Model 
reduction 

Stop 
words 

321 w. 98.60 % 580 w. 54.7 % 291 w. 
343 w. 98.45 % 569 w. 55.5 % 291 w. 
376 w. 98.31 % 555 w. 56.6 % 291 w. 
433 w. 98.05 % 538 w. 58.0 % 291 w. 
681 w. 96.94 % 482 w. 62.3 % 291 w. 
881 w. 96.04 % 401 w. 68.6 % 291 w. 

 



and categories dynamically in order to make 
the correct inference. Third, information from 
the lower levels such as pronunciation of 
words, recognition confidence and n-best 
alternatives of the recognizer output can be 
incorporated to assist the making of correct 
inferences.   
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