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Abstract: - In the paper the constraint optimisation of approximately convex function, which appears in 
optimal bit-quantization allocation in subband image coding is presented. A novel modelling for graphical 
illustration of optimisation is introduced. A simple single-variable fuzzy iterative search algorithm is used. 
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1   Introduction 
A frequent problem in scientific and engineering 
computation is to determine the optimum (the 
maximum or minimum) and the corresponding 
arguments of a real-valued function 

1 2( , ,..., )nf x x x of n real variables over a set S in an 
n-dimensional space: 

 1, 2max( ( ));     ( ,...., )n
S
f x x x
�

�

x
x x   (1) 

If the set S is the entire n-dimensional space, the 
optimisation problem is said to be unconstrained. 
Otherwise, the problem is constrained by whatever 
conditions define the set. Usually, the set is defined 
by a set of non-linear functions satisfying equality 
or inequality conditions (equality or inequality 
constrained optimization): 

( )  or ( ) ,   1,..., ;     i ig b i m m n� � � �g x b x . (2) 

It is easier to find a local maximum of function than 
it is to find the global maximum over the entire 
domain. In practice, for n > 2, the only way to find a 
global maximum is to have information from the 
problem itself about the location of such a 
maximum and then search for the local maximum. 
Follows a short overview over unconstrained and 
constrained multi-variable optimisation methods in 
order, to better understand the proposed solution in 
presented image coding application [1],[2]. 

 
 

1.1    Unconstraint optimization 
 
1.1.1  Simple multivariable searches 

Some multivariable search methods use a sequence 
of single-variable searches to achieve an optimum. 
The problem is how to choose a sensible direction 
in which to search for the optimum of function. 

An old method is method of steepest 
descent, proposed by A. Chauchy in 1845. Assume, 
that function f(x) has continuous partial derivatives 
of several orders. The gradient gr(x) of f at x is a 
vector, whose components are / if x� � . Then gr(x) 
defines the direction of steepest descent of f at x. 
Under weak hypotheses, this method will converge 
to the local minimum of f in whose basin the first x 
is located. The analysis show that this method 
converges very slow in some cases, even for small 
value of n (for example, if the function is constant 
on ellipses or large eccentricity). 

For a general strictly quadratic function f on 
n variables we can compute the minimum sx  at an 
arbitrary point x by: 

    1( );      s
�

� � � �x x H gr x H B      (3) 

where the Hessian matrix B consists of second 
partial derivatives of f at sx : 2 /( )i jf x x� � �� . 

 
1.1.2  Advanced multivariable searches 
If a smooth function is not quadratic, we can use an 
modified iteration of the form: 

             1 ( )k k k k�
�
� � � �x x H gr x ,                (4) 

where kH is the k-th approximation of the H. 
Methods of this type are called variable metric 
methods or quazi-Newton methods. 
 



 

 

1.2    Constraint optimization 
The equality constraints problem ( ( ) �g x b ) 
might be solved by suitable insertion of constraint 
equation in the function f to get unconstraint 
problem. For the general equality constraint 
problem one can form the Lagrange function 

 � �1,
1

( , ..., ) ( ) ( )
m

m i i i
i

L f b g� � �

�

� � ��x x x  (5) 

to obtain unconstraint problem. By setting partial 
derivatives of L to zero, we obtain the necessary 
conditions for the extremum of ( )f x , subject to 

( ) �g x b : 

 
1

0;   1, 2,...,
m

i
i

ik k

gf k n
x x

�

�

��
� � � �

� �
� ,  (6) 

where 1 2, ,..., m� � �  are the Lagrange multipliers. 
These n equations must be solved together with the 
m constraints i ig b� . There are n+m equations in 
the n+m unknowns 1 2, ,..., nx x x  and 1 2, ,..., m� � � . 
The method is known as Lagrange-multiplier 
method. For the two-variable problem 1 2( , )f x x  
subject to single constraint 1 2( , )g x x b� , the 
mathematical conditions became much simpler: 

 1 20;   ( , ) 0;  1, 2.
k k

f g b g x x k
x x

�
� �

� � � � � �
� �

  (7) 

Illustrated geometrically, the solution is the crossing 
point between curves 1 2( , )g x x b�  and the  

1 2( , ) constantf x x �  in the plain 1 2,x x , at which 
the curves have the common tangent with slope �. 

For the case of inequality constraints 
( ( ) �g x b ) Kuhn and Tucker proved the following 
theorem. To maximize the function ( )f x  subject to 

( )g �x b , the equivalent conditions to (6) are: 

    
0

0;   1,...,
m

i
i

ik k

gf k n
x x

�

�

��
� � � �

� �
�   (8) 

�( ) 0,  0,  0 ;  1,...,i i i i i ib g b g i m� �� � � � � � � (9) 

According to ( ) 0i i ib g� � � �  there are two 
alternatives: a) 0ig � , in which case the constraint 
is “active” and the corresponding 0i� � , or b) 

0i� �  and 0ig � , so that the optimum is away 
from this constraint and the Lagrange multiplier is 
not necessary. 

2 Optimal Bit (Quantization) 
  Allocation in Subband Image Coding 
The standard subband transform image coding 
scheme is implemented [3], containing separable 
discrete wavelet transform as subband transform, 
uniform scalar quantizer of subbands and entropy 
coder. The Johnston's 16b filters with near perfect 
reconstruction property are used. 
 

 
Fig. 1: The disposition and quantizing of the transformed 

subbands 
 

In the quantization process to the each subband 
Yi i J, , , � �1 1� , the quantization step Qi  is 
allocated, see Fig. 1. The quantization steps 
constitutes the allocation vector Q : 

  � �0 1 1, ,..., JQ Q Q
�

�Q .  (10) 

For entropy encoding adaptive recency rank coder is 
employed [6]. The rate-distortion relation of the 
entropy coded uniform scalar quantizer at high bit 
rates (low distortion) can be modelled as [4]: 

                        2 2( ) 2 iR
i i i iD R h �

� �

� � � ,           (11) 

where D is the distortion, R bit-rate, �
2  is the 

variance and i is the subband index. The constant hi  
depends on statistics of subband Yi. (1.2 for Laplacian 
distribution). The distortion is related to the 
quantization step as �4]: 

                         
2

( )
i

i
i i i

QD
Q� �

� ,                    (12) 

where relationship � �i i iQ( )  depends also on the 
statistic of the subbands Yi . At low ratio Qi i�  for 
� i  practically constant value 12 can be assumed: 

                             
2

12
i

i
QD �                            (13) 



 

 

For higher ratio of /i iQ �  this assumption is not 
valid, especially in higher frequency subbands, 
because most natural images have energy 
concentrated at low frequencies. When the 
quantization steps approaches the signal variance, the 
distortion saturates and is approximately equal signal 
variance. The � �i i iQ� / 2 . In the modelling it is 
appropriate to consider also the well known relations 
for orthogonal subband coding: 

   
1 1 1

0 0 0
;   ;  1

J J J

i i i i i
i i i

R R D D� � �

� � �

� � �

� � � � �� � �      (14) 

where are R the total bit rate, Ri subband bit rates, D 
total distortion, Di distortions of subbands, and ai 
normalized areas of subbands Yi. 

The problem of optimal bit allocation is to 
minimize the total distortion and not to exceed the 
constraint (available) total bit-rate conR : 

� �
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Weighted total distortion can also be minimized: 

                 
1

0
( ) ( )

J

w i i i i
i

D w D R�

�

�

� � ��R             (16) 

where iw  are perceptual weights. Optimal bit 
allocation is in general a complex non-linear problem, 
which must be solved numerically. Assuming that 
multivariable function ( )D R is strictly convex and 
anywhere differentiable, the condition for the 
optimum can be expressed as: 

                        ;   ,
i j

D D i j
R R
� �

� �
� �

.                  (17) 

Furthermore, if orthogonal subband transform is used, 
i.e. the subband distortion D and bit rate R are 
expresses by (15), the condition for optimum became 
more simple: 

          
( )( ) ;    ,i ji i

i j

D RD R i j
R R

�
��

� � � �
� �

.       (18) 

The method is known as constant slope method. It is 
equivalent to the following Lagrange multiplier 
method. Assuming low distortion model (11) and  
equations (14), then the problem (16) can be solved 
analytically introducing Lagrange function: 

( ) ( );   ( ) conL D R R R�� � � �R R R    (19) 

In practice, the exact relations ( )i iD R are not known 
and the condition of convexity is not fulfilled. One 
can still use similar ideas on operative rate distortion 
functions. The classical are methods, introduced by 
Shoham (1998) and Westernik (1988). They not 
assume the knowledge of the statistics of subbands, 
but are computation demanding and not appropriate 
for fast real time applications. 

We propose a simple single-variable 
iterative searching algorithm, which is not optimal in 
general, especially at higher distortions, but is 
computational efficient and has small number of 
iterations. However, to obtain the analytically 
calculated optimal bit rates iR , the quantiaztion steps 
for each subband must be adjusted. In fact, the 
distortion and bit rate are controlled via quantization: 

 ( );    ( )i i i i i iD D Q R R Q� �  (20) 

Therefore, the problem of bit allocation is then 
reformulated as problem of quantization allocation: 

1

0
min ( ) ( )

J

i i i
i

D D Q�

�

�

� ��Q
Q  

                   
1

0
( ) ( )

J

i i i con
i

R R Q R�

�

�

� � ��Q          (21) 

The distortion can be expressed as: 

                  
21

0
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( / )

J
i

i
i i i i

QD
Q

�
� �

�

�

� ��Q .            (22) 

At small distortion (23) become: 

 
21

0

( )
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i i
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QD �
�

�

�
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Using efficient entropy encoding, the constraint can 
be rewritten in the form: 

                        
1

0

( ) i
J

i con
i

g Q Q�

�

�

� ��Q ,         (24) 

where conQ  is the constraint value. The optimisation 
process for simple two variable case, obtained using 
only one resolution level of wavelet decomposition 
( 4J � ) and equal quantization steps in detail 
subbands � �0 1 2 3,  Q Q Q Q� � �Q  is graphically 
explained in Fig. 2. The relative areas are �i=1/4 for 
all i=1,…,3. Assuming small ratios Qi i� and 
orthogonal transform, the distortion is: 
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�
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Employing efficient entropy encoding the constraint 
is: 

      1/ 4 3/ 4
1 2 0 1( ) ( , ) cong g Q Q Q Q Q� � � �Q .  (26) 
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Fig. 2: Ideal coding model using 12� � . 
a) Distortion as function of quantization steps 
b) Graphical illustration of the optimization method 

 
Figure 3 shows characteristics obtained by using 
more realistic coding model with variable 

( / )i i iQ� � , assuming roughly Laplacian 
distribution in all subbands. We used the following 
simplified mathematical model: 

2

2.6 ( / ) 12;  0< / 5;
( / )

( / ) ;           5< /   
i i i i

i i i
i i i i

Q Q
Q

Q Q
� �

� �
� �

� � ��
� �
�

.(27) 

The curve ( / )i i iQ� � for subband 0 with 0� =80 is 
shown in Fig. 3c. At small distortions (small 

/i iQ � ), the model behaves as ideal model in Figure 

2. The total distortion is expressed by equation (22). 
The following constraint equation is obtained: 

                   
1

0 ( / )
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i i i i

Q Q
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Fig. 3: More realistic coding model with variable 

( / )i i iQ� � . The subband variances are: 0 80� � , 

1 30� � , 2 30� � , 3 30� � . 
a) Distortion as function of quantization steps. 
b) Graphical illustration of the optimization method 
c) �  as function of /Q �  for subband 0. 



 

 

3  The fuzzy iterative solution 
For solving the practical bit allocation optimization 
problem, where function is no more strictly convex 
(quadratic), we still follow the idea from ideal case, 
represented in Fig. 2. The optimisation problem can 
be solved using simple one-variable search, if the 
right direction is find. For this purpose, we 
introduced the constant direction vector k: 

� �0 1 1
0

, ,.... ;   ,  0,1,..., 1i
J i

Qk k k k i J
Q�

� � � �k  (29) 

The vector Q is then 0k Q� �Q . Choosing the 
vector k, the distortion depends simple only on 
single scalar variable 0Q : 

                    0( ) ( )D D D Q� � �Q k .             (30) 

From Fig. 2 we concluded, that the optimum point is 
reached using equal quantization steps for all 
subbands, i.e. k=1. This is well known result for 
small distortions, which can be obtained analytically 
using Lagrange-multiplier method. We choose this 
direction as near-optimal direction also for images, 
by which distortion is no more quadratic function at 
higher values of variables iQ . Instead of searching 
minimal distortion, we simple prescribe the desired 
distortion. Using iterative algorithm the quantization 
step 0Q (and via k indirectly Q) is adjusted until 
desired distortion is obtained with prescribed 
tolerance. The iterative algorithm pushes the point 

( )nQ  along direction defined by k (in ideal case 
along diagonal), n is iterating index. Vector k 
therefore determines the direction of successive 
approaching to the end (probably optimal) point 

( )NQ , N is the total number of iterations. In the 
case of minimizing weighted distortion, the optimal 
direction is shifted to the direction determined by 

/i i jk w w� , where wi are selected distortion 

(perceptual) weights. For coarser quantization, 
above determined directions are no longer optimal. 
Generally, the distortion or compression ratio 
should be considered. The searching for optimal 
point in the direction k can be viewed as iterative or 
control algorithm for achieving the desired 
(minimum) distortion. It can be considered also as 
the algorithm for finding the crossing point between 
function 0( )D Q  and line desD . Different iterative 
algorithms can be used, usually bisection algorithm 
is employed. It is stable, but has small convergence 
rate. We introduce the fuzzy iterative algorithm. It 

can be by rules user friendly adapted to the 
gradients in searching direction for particular 
images. The instantaneous error is: 

                        ( ) ( ) dese n D n D� �                 (31) 

The algorithm starts with small initial value 0 (0)Q . 
In each iteration the new quantization value is 
obtained as an old value plus increment dQ(n): 

                   ( ) ( 1) ( )Q n Q n dQ n� � � .          (32) 

The increment dQ(n) is generated by the fuzzy rule 
system (fuzzy controller). Fuzzy rules linguistic 
expressed the approaching of the iteration point to 
the desired value. In the simplest form [5], the fuzzy 
output depends on instantaneous error: 

   

1.  If (  is ) then (  is )
2. If (  is ) then (  is )
3. If (  is ) then (  is )
4. If (  is ) then (  is )
5.  If (  is PB) then (dQ  is ),0

e NB dQ PB
e NS dQ PS
e ZE dQ ZE
e PS dQ NS
e NB

0

0

0

0

         (33) 

where NB means negative big, NS negative small, 
ZE zero, PS positive small and PB positive big. For 
efficient implementation of the centre of gravity 
defuzzyfication method, the crisp values for output 
membership functions are used. Three triangular 
membership functions for input variable e are used. 
Operational 0( )D Q -curves differ for different 
images. To adapt the fuzzy system to the slope of 
particular curve and further reduce the number of 
iterations, the width of middle input membership 
function is adapted to the curve’s slope. The slope 
can be used as additional input variable of the fuzzy 
logic system. The instantaneous slope 0/dD dQ  is 
estimated in each iteration using approximation 

0( ) / ( )D n Q n� �  If the slope is smaller at same 
error, the change 0dQ  must be also smaller. This is 
incorporated in fuzzy rule-system. 

 
 

4   Experimental results 
Fig. 5 and 6 show results obtained with typical 8-bit 
grey-scale images “Random” (white noise) and 
“Lena”, using the two dimensional grid 0 1,Q Q �  
�1, 25, 50, 100, 250, 500�. In Fig. 5a and 5b the 
relationship 0 1( , )D Q Q  and contour plain for image 
“Random” are presented. The results are comparable 
with those, obtained by modelling in Fig. 2 and 3. 
The R-D-characteristics for images “Random” and 
“Lena” are shown in Figures 5c in 6. The smallest 



 

 

distortions (circles in diagrams) at given bit rates 
were obtained with equal quantization steps even at 
higher distortions and images by which the subband 
variances decrease by increasing the frequency. The 
fuzzy iterative algorithm decreases the average 
number of iterations for different images for about 
30% in comparison with bisection algorithm. 
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Fig.5: Experiments with image “Random” 

2 5461.9� � , 0 74.04� � ,
1 73.81� � , 2 74.01� � 3 73.78� � . 

a) Distortion as function of quantization steps 
b) Contour plane          c) Rate-distortion characteristic 
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Fig. 6: Experiments with image “Lena” 
2 2298.1� � , 0 95.43� � , 1 6.59� � , 2 4.08� � 3 3.03� �

 
Rate-distortion characteristic. 

 
 

5   Conclusion 
The results confirm the applicability of used 
subband coding modelling and our decision for 
searching the near-optimum in the directions with 
equal quantization steps. The incorporation of fuzzy 
iterative algorithm enable user friendly adaptation to 
the slopes in searching direction for particular 
image using fuzzy rules and so to speed up the 
convergence. 
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