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Abstract: - We consider the problem of finding a safe path for a robot/manipulator in a dynamic environment and
propose a novel neural network model for solving this task. The network has discrete time-dynamics, is locally-
connected, and is, hence, computationally efficient. No preliminary information about the current world status is
required for the planning process. Path generation is performed via the neural-activity landscape, which forms a
dynamically-updating potential field over a distributed representation of the configuration space of an object. The
network dynamics guarantees local adaptations, and includes a set of strict rules for determining the next step in
the path of an object. According to these rules, planned paths tend to be optimal in aL1 metric. We present here
the description of the model, and evaluate simulation results for various types of environmental changes.
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1 Introduction
Capabilities of planning safe paths independently are
crucial for autonomous robots/manipulators. Real-
world environments, where such robots have to oper-
ate, are often unknown to them and may have a com-
plex structure. Moreover, the status of the operational
environment may change in time due to sudden ap-
pearance or/and disappearance of other objects.

In the last decade the problem of dynamical path
planning has been in the research focus of many sci-
entists, and a lot of papers, devoted to this non-trivial
problem, have been published. Most of the existing
approaches (e.g [1]) require full knowledge about the
world.

Several neural network approaches have been pro-
posed for solving the problem of path planning ([2]-
[11]). The authors of [6] use a self-organizing Koho-
nen net with nodes of two types. The work [5] con-
tains a description of a network with oscillating be-
havior, that solves the problem of path planning for an
object with two degrees of freedom (DOFs), formu-
lated as a dynamic programming task. An algorithm,
proposed in [9], uses a set of intermediate points, con-
nected by elastic strings. Gradient forces of the poten-
tial field, generated by a multi-layer neural network,
minimize the length of the strings, forcing them at the
time to round the obstacles. Authors of [2] used a
multilayer feed-forward network to perform real-time
path planning. A neural network for path finding, de-
scribed in [4], has three layers of neurons with recur-

rent connections in the local neighborhoods. The dy-
namics of the network emulates the diffusion process.

All of the approaches, mentioned above, are ap-
plied, however, only to stationary environments. Be-
sides that, the optimality of the path is often left out of
consideration.

A biologically plausible neural network for dynam-
ical trajectory generation, described in [10], has re-
cently been improved in [11], but additional efforts
are required for tuning the network parameters.

In this paper we present a novel neural network
dynamics for finding a path in a dynamic world.
The model is based in interweaving manner on three
paradigms, (a) the notation of configuration space
as a framework for a flexible object representa-
tion [12]; (b) a potential field building, which we
state as a generic and elegant method for forma-
tion/reconstruction of a path; and, (c) a wave expan-
sion mechanism, that guarantees an efficient construc-
tion of the potential field.

The model has been tested for various types of dy-
namical changes, and has demonstrated efficient and
effective path generation capabilities.

The rest of the paper is organized as follows. In sec-
tion 2 we give a formal problem definition. Section 3
contains the description of the proposed neural net-
work model. We evaluate simulation results in section
4 and conclude with a discussion of results in section
5.
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2 Problem Definition
Without loss of generality, we can define the config-
uration spaceC � <d to be a regularly discretized
hypercube, whered is the number of DOFs of an
object. For an object inC the starting and the fi-
nal configurationsS and T are denoted. Suppose
at the timetk, there is the numberNk of obstacles
(i.e. of forbidden configurations) inC. At that mo-
ment of time, positions of all obstacles inC form
the obstacle regionOk = fOk

i g = f(Xk
i1
; :::;Xk

id
)g,

where the obstacle coordinates inC are denoted by
vectors(Xk

i1
; :::;Xk

id
), 1 � i � Nk. Let �(tk) =

(p1(tk); ::; pd(tk)) define the configuration of the ob-
ject inC at the timetk. The task is to find a safe (i.e.
a collision-free) path inC from the start to the goal,
i.e. a path� , that satisfies the conditions:�(ts) = S,
�(tg) = T , �(tk) \ Ok = ;, ts � tk � tg, wherets
andtg are the time of starting and the time of reaching
the goal, respectively.

3 The Model Description

3.1 The General Idea
We realize in our approach the idea of generating a
numerical potential field over a discretized represen-
tation of the configuration space. Therefore, the state
space of the neural network is the discretizedC of
an object. We use a wave-expansion mechanism to
form the desired potential field. The idea of neural
wave expansion was proposed and applied for a sta-
tionary domain in [13]. According to this idea, the ac-
tivity is spread around the source of excitation, and the
minimum value of the generated potential field always
stays at the excitory point, which, in turn, attracts an
object. An example of a simple wave expansion in the
plane is depicted in Fig. 1.
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Fig. 1. Wave fronts expansion around a target point in a 2D
environment.

For planning paths in a non-stationary domain, we
propose a dynamics for the wave expansion, which
makes an effective combination of (1) repetitive wave
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Fig. 2. a) The neuron model; b) Network neighborhood
structure in the plane.

expansions, and (2) rules for indication of the object’s
next route step in a dynamically-updating potential
field. These rules ensure that object moves only along
a safe route. Such combination is achieved by using
a set of simple functions, that define the network dy-
namics.

We feed a regular excitation source at the target,
resulting in a new wave of neural activity in the net-
work field at each time step. Neural activity, therefore,
propagates first through the network field, and then
changes locally, adapting to the dynamical status of
the environment. Since in the case of a stationary en-
vironment, wave fronts yield paths, which are optimal
in aL1 metric, dynamical paths, which are generated
by the proposed network, tend also to keep such op-
timality. Consequently, longer paths to the target are
automatically cut out of consideration.

3.2 Neural Network Architecture
The proposed neural network has a parallel locally-
connected structure of cellular type. Depending on
the dimensionality ofC the network may consist ei-
ther of a single layer (for a 2D configuration space),
or a set of layers with locally-connected neurons. The
arrangement of the neurons coincides with the dis-
cretized structure ofC, i.e. each discrete position inC
is associated with a neuron in the network field. Fig-
ure 2a contains the neuron structure.

The i-th neuron is connected withn = 2d imme-
diate neighbors, whered is the dimensionality ofC.
We will denote a set of neighbors of thei-th neuron
assi, i.e., si = fi1; :::; ing, and the relative order of
neurons in the local neighborhoods is fixed. A neuron
neighborhood for an example 2D configuration space
is depicted in Fig. 2b.

The network can be viewed as a discrete-time dy-
namical system, which can be fully described by a
set of neuron state vectorsXi = [xi;cWsi ] � <2n+2.
The first elementxi of vectorXi is the activity level,
or the output of thei-th neuron, which is a real
scalar quantity. The second element, vectorcWsi =
[wi1i; :::; wini; �wii; �wi1i; :::; �wini] consists of two sets
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of connection weights, defining the synaptic strengths
of the connections between neuroni and its immedi-
ate neighbors. Notice, thatwji, �wji, wij and �wij are
four connection weights between neuronsi andj, and
weightswji and �wji follow different learning rules.

Activity levels of the neurons in the neighbor-
hood of the neuroni comprise vectorXsi =
[xi1 ; xi2 ; :::; xin ]. The neuroni is active, ifxi > 0,
and inactive, otherwise.

Additionally, the activity of thei-th neuron can be
influenced by excitory and inhibitory inputs of the
neighborhood neurons, which form accordingly vec-
tors esi = [ei1 ; :::; ein ; ei] andosi = [oi1 ; :::; oin ; oi],
whose elements could be of value zero or one only.

3.3 Path Planning Process
In this section we present the underlying idea of the
path planning process along with its formal descrip-
tion.

State equations (1)-(3) contains the rules, providing
the activity evolution of the neuroni and associated
with the latter connection weights.

xt+1i = ei + (1� ei)�

r
�P

j2si
wji(xj + 2 + ej � �wjj)

�
:

(1)

wt+1
ji = U (Pk(Xsi)) ; j 2 si; (2)

�wt+1
ji = ej � ( �w

t
ji + 1) + (1� ei)�

�Æji � (xj + ej � �wjj); j 2 ffsig+ ig;
(3)

Functions r(:), U(:) and Mk(:) are described as

r(�) =

�
[� ]; � � 0
0; � < 0

; where[� ] denotes whole part

of � , U(�) =

�
1; � > 0
0; � � 0

; and�Æki =
�
1; i 6= k

0; i = k
:

Initially, activity levels of all neurons and all con-
nection weights are zero. Available information about
the current status of the environment is applied to the
external neuron inputs. So, the neurons, correspond-
ing to the stationary or dynamical obstacles inC re-
ceive one on their inhibitory inputsoi. The neuron
associated with a target position inC receives one on
its excitory input, and initiates, therefore, spreading
of activity in the neural field. As can be seen from
Eq. (1), the activity level of the target neuron is equal
to one during the network evolution, that corresponds
to the minimum value of the potential field. From
the same formula, outputs of other neurons depend on
the current state of the neurons in the local neighbor-
hoods. Eqs. (2) guarantee the positive value of only
the connection weight from the neighboring neuron,
chosen by the priority functionPk(:) (4).

Pk(xsi) =

�

1; k = 1

k + I(

Pk�1
l=1 
l); 1 < k � n

: (4)

This function queries the neighboring neurons in ac-
cordance with a priority, assigned to them, and selects
the only neuron, which satisfies to a positive value of
the expression (5). The priority could be given, e.g.,
by assigning a numerical label. The neighboring neu-
rons will be queried then according to the increase of
this label.


k = F (k) � U(xtk) �E(xtk; �w
t
ki)��

U(xti) �D(xti; x
t
k) + F (xti)

�
:

(5)

Here functionsI(:), E(:), D(:) andF (:) are given

by I(�) =

�
�c; c >> 0; � > 0
0; � � 0

[13], wherec is

a big positive constant,E(�1; �2) =

�
1; �1 6= �2
0; �1 = �2

,

D(�1; �2) =

�
1; �1 � �2 � 0
0; �1 � �2 < 0

, andF (�) = 1 �

U(�).
As follows from the formula (5), the connection

weightwji will receive the positive value of one if,
and only if the following conditions are fulfilled: a)
the neuronj has changed its activity level during the
considered time step; this means, that the neuronj

belongs to the shortest path; b) the neuronj is active;
i.e., the rules a), b), c) and d) are fulfilled also for
this neuron; c) it has zero on its inhibitory input; i.e.,
the neuronj does not correspond to an obstacle at the
current time step; and, if thei-th neuron already has
during the considered time step non-zero activation,
d) the activity level of the neuronj is not greater than
those of thei-th neuron; i.e., an object will move only
along the shortest route. These rules ensure, there-
fore, that an object always moves along the safe and
the shortest path. If one of these rules is false, the
corresponding weightwji either receives zero value,
or stays zero. Connection weights�wji (Eqs. (3)) are
responsible for storing of activity values of the neigh-
boring neurons, calculated at the previous time step.
For the neuron, corresponding to a target position,
whose activity stays always at one, the necessary con-
dition of alteration of the activity level is done via in-
crementing the associated weight�wjj by one. This
fact guarantees, that the immediate neighbors of the
target neuron will evolve properly.

Permanent excitation of the target neuron via its
external inputei leads to generation at each time
step of a new wave of neural activity in the network
field. These waves carry an updated information about
the environment status. The dynamical activity land-
scape, therefore, accounts for the changes in the envi-
ronment and adapts to them.

An object starts moving as the first wave of neu-
ral activity has reached its initial position. Due to the
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strict rules, which are included into the network state
equations and provide a proper potential field build-
ing, the next step rule for an object becomes rather
simple: it should move into the direction of the posi-
tive weight from the neighboring neuron, or, formally,
�(ts + n) = fpj : wji > 0; j 2 sig, wherepj is the
next position of an object inC, associated with the
neuronj, ts is the starting time, andn > 0 denotes
then-th discrete time step.

4 Simulation Results
In this section we evaluate simulation results for vari-
ous types of dynamical changes in the workspace. We
demonstrate our experiments for a point object with 2
DOFs, that doesn’t restrict general applicability of the
model.

We show stationary obstacles in the workspace in
black, and denote dynamical obstacles in a light-gray
color. Paths of the object are represented by con-
tinuous curves. Empty squares denote randomly-
appearing obstacles. SP and TP stand for Start and
Target Position.

We used for our experiments a network field,
consisting of61 � 61 neurons over the discretized
workspace representation. The borders of the
workspace were also treated as obstacles. For test sim-
ulations we chose the neighboring neurons labelled as
shown in Fig. 2a. This doesn’t lead to a loss of the
model functionality. Therefore, when possible, the
object prefers first to move horizontally.

4.1 The ”open gate” situation
This model situation is shown in Fig. 3-4. The
workspace is cluttered with static obstacles. After
50 path steps of the object, dynamic obstacles (at the
right border of the workspace) start to move in the di-
rection, shown by the arrow, as depicted in Fig. 3a.
Figures 3b and 3c contain two further intermediate
episodes during the traverse. The dynamic obstacles
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Fig. 3. Path planning in the dynamic environment: a),b),c)
- three intermediate stages during the navigation.

stop then at the position, shown in Fig. 4a, leaving a
small gate open. The object traverses through the gate,
while avoiding 30 random obstacles, appearing in the
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Fig. 4. The ”open gate” situation: a) Moving obstacles do
not influence the planned path; b) Activity landscape at the

moment of reaching the target in Fig. 4a).

workspace at each time step. The resulting path of the
object and the activity landscape, corresponding to the
time of reaching the target are illustrated in Fig. 4a and
4b, accordingly.

4.2 The ”closed gate” situation
The initial setup for this test example is very similar to
the ”open gate” situation, and the object goes through
the same intermediate stages, as shown in Fig. 3. But
in the new situation, the moving obstacles stop at the
position, as illustrated in Fig. 5a, and close the pas-
sage before the object has come through the gate. The
object must then dynamically react to environmental
changes, and it found another route. The final path
and the activity landscape at the moment of reaching
the target are depicted in Fig. 5a and 5b, respectively.
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Fig. 5. The ”closed gate” situation: a) The object
dynamically follows another route; b) Activity landscape

at the moment of arriving to the goal in Fig. 5a).

4.3 Disappearing dynamic obstacles
In this model situation the dynamic obstacles began
the simulation as depicted in Fig. 6a, and started to
move in the direction of the arrows. The object began
to traverse with account of dynamical changes, and as
it went 30 path steps, the obstacles froze at the initial
positions. The activity landscape then adapted quickly
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Fig. 6. Disappearing dynamic obstacles: a) Finding a route
after the obstacles stopped moving; b) Activity landscape

at the moment of reaching the target in Fig. 6a).

to the status of the world. The resulting activity land-
scape in Fig. 6b reflects the potential field structure
for the static workspace at the moment of arrival to
the goal. The path of the object is depicted in Fig. 6a.

4.4 Emerging dynamic obstacles
In this example situation the start and the target po-
sitions for the object are as in the previous example.
The obstacles appeared first as shown in Fig. 6a. The
object started moving, and as it made 30 path steps,
the obstacles began drifting in the directions of the ar-
rows. The object dynamically adapted to this complex
situation and successfully approached to the goal. The
resulting route and the activity landscape at the arrival
to the target are illustrated in Fig. 7a and 7b, accord-
ingly.
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Fig. 7. Emerging dynamic obstacles: a) Planning a path
while adapting to sudden changes in the environment; b)

Activity landscape at the moment of arrival to the target in
Fig. 7a).

4.5 Workspace occupation by random obsta-
cles
We performed with our model a series of experiments
with randomly-appearing obstacles. Some examples
for 10, 150 and 250 obstacles, emerging randomly at
each time step, are illustrated in Fig. 8. These model

examples clearly demonstrate the tendency of the path
to be optimal inL1 metric. The path with 10 obstacles
in Fig. 8a is near-optimal (see Table 1 for results of
another experiments).

The number of obstacles Path length
empty workspace 101(the optimal length)
10 obstacles 107
50 obstacles 121
100 obstacles 133
150 obstacles 119
200 obstacles 139
250 obstacles 209

Table 1. Path lengths inL1 metric in the experiments with
random obstacles, appearing at each time step in the
workspace. The start and the target are as in Fig. 8.
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Fig. 8. Planning paths avoiding randomly-appearing
obstacles in the workspace: a) With 10 obstacles; b) With

150 obstacles; c) With 250 obstacles.

4.6 Target pursuit
Our network is also capable to dynamically track a
moving target. We show two examples here, for the
empty workspace, and for the workspace with 50 ran-
dom obstacles, emerging in the workspace at each
time step. In both situations, depicted in Fig. 9a and
9b, the target started to move after 10 path steps of the
object. The path of the target is shown by empty cir-
cles. To reach the target, the object must choose the
optimal route. In both examples the object caught the
moving target and demonstrated a reliable pursuance.

5 Conclusions
We presented in this paper a novel neural dynamics to
solve the problem of finding a path in a changing envi-
ronment. The proposed dynamics in efficient manner
combines the wave expansion mechanism with a set
of rules for detection of the next candidate path step.
Due to local interactions between neurons and a reg-
ular excitation at the target neuron, the neural activ-
ity landscape adapts and accounts for environmental
changes, providing proper formation of the potential
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Fig. 9. Target persuasion: a) In an empty workspace; b)
With 50 randomly-appearing obstacles.

field. The target point stays always at the minimum
value of the potential field and attracts an object to the
goal.

We focus in the following list on the main proper-
ties of the proposed model:
. no a priori knowledge of the environment status

is needed;
. no learning process is required;
. network is locally-connected;
. computational complexity grows linearly in the

number of neurons in the field;
. tendency to gain optimal paths inL1 metric;
. due to fast activity propagation real-time planning

is possible;
The proposed dynamics has been tested on various

types of complex dynamical changes, including ap-
pearance and disappearance of obstacles, avoidance of
random obstacles occupying the workspace and track-
ing a moving target. It has shown both the capabilities
of fast adaptation to the dynamical changes and a fast
activity stabilization in the absence of the latter. The
planned paths are safe and have the tendency to the
optimality in aL1 metric.

Due to dynamically-updating potential field an
object navigates actively, without waiting until the
environment presents ”good-traversal opportunities”.
Hence, one can consider the proposed approach as a
compromise between tendency to path optimality and
active reaction on environmental changes.

The described approach could be applied for plan-
ning paths of both mobile autonomous systems and
robotic manipulators.

6 Acknowledgments
The work of the first author has been done with sup-
port from the DFG (German Research Society), the
grant GRK256-2. The first author would like to thank
also Patrick McGuire and Robert Haschke for their
helping.

References:
[1] B. Baginski, TheZ3-Method For Fast Path Plan-
ning in Dynamic Environments,Proc. of IASTED
Conf. Applications of Control and Robotics, 1996, pp.
47-52.
[2] J. Park, S. Lee, Neural Computation For Collision-
free Path Planning,Proc. IEEE Conf. on Neural Net-
works, Vol. 2, 1990, pp. 229-232.
[3] Ashraf A. Kassim, B.V.K. Vijaya Kumar, Path
Planning for Autonomous Robots Using Neural Net-
works, Journal of Intelligent Systems, Vol. 7(1-2),
1997, pp. 33-56.
[4] Th. Kindermann, H. Cruse, K. Dautenhahn, A
fast, three-layer neural network for path finding,Net-
work: Computation in Neural Systems, Vol. 7, 1996,
pp. 423-436.
[5] M. Lemmon, 2-Degree-of-freedom Robot Path
Planning using Cooperative Neural Fields,Neural
Computation, Vol. 3, 1991, pp. 350-362.
[6] Jules M. Vleugels, Joost N. Kok, Mark H. Over-
mars, Motion Planning Using a Colored Kohonen
Network,Technical Report, Department of Computer
Science, Utrecht University, 1993, Report RUU-CS-
93-38.
[7] G. Bugmann, J.G. Taylor, M. Denham, Route find-
ing by neural nets, In:Neural Networks(ed. J.G. Tay-
lor), Alfred Waller Ltd, 1995, pp. 217-230.
[8] L. Tarassenko, M. Brownlow, G. Marshall, J.
Tombs, A. Murray, Real-time autonomous robot nav-
igation using VLSI neural networks, In:Advances in
Neural Information Processing Systems 3, 1991, pp.
422-428.
[9] S. Lee, G. Kardaras, Collision-Free Path Planning
with Neural Networks,Proc. Int. Conf. on Robotics
and Automation, 1997, pp. 3565-3570.
[10] R. Glasius, A. Komoda, S. Gielen, A biologically
inspired neural net for trajectory formation and ob-
stacle avoidance,Biological Cybernetics, Vol. 74(6),
1996, pp. 511-520.
[11] Simon X. Yang, Max Meng, An efficient neural
network approach to dynamic robot motion planning,
Neural Networks, Vol. 13, 2000, pp. 143-148.
[12] T. Lozano-Perez, Spacial planning: a configura-
tion space approach,IEEE Transactions on Comput-
ers, 1983, pp. C-32:108-120.
[13] Ashraf A. Kassim, B.V.K. Vijaya Kumar, The
wave expansion neural network,Neurocomputing,
Vol. 16, 1997, pp. 237-258.

6


