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Abstract: - One of the principal motivations for constructing artificia l modular neural networks comes from  
biological neural systems, where modularity can be observed at different levels of organization. Starting from 
some theoretical results that roughly state that modular architectures generalize better than their monolithic 
counterparts, we test through simulations this assertion on three problems: the parity function and other two "real 
world" problems as face expression recognition and diabetes diagnosis. We also analyze how the size of the 
networks influences the generalization ability. From the results we extract some general recommendations on 
how to build and train modular architectures. 
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1   Introduction 
There is clear evidence that a modular organization 
exists at different anatomical scales of the brain of 
living organisms,  ranging from a global functional 
specialization to the level of cortical columns, and 
maybe even deeper [1][2]. The main advantage of 
modular systems might be the reduction of mutual 
interference between simultaneous processing. Also, 
even it is not completely clear, seems that modularity 
enhance learning and generalization performance, 
explaining, for example, that many vital tasks in 
living organisms require minimal exposure of 
relevant stimuli to be learned. Other potential  
benefits of modular architectures include fault 
tolerance, good scaling properties and better fitness to 
hardware constraints [2][3]. 

From this perspective, applying biological ideas 
to the construction of artificial neural networks seems 
promising, but practice has revealed that the process 
of achieving the high capabilities of biological 
systems is not quite simple and straight. 

Neural networks, in particular feed forward ones, 
have been  successfully applied  to several classes of 
problems but still many aspects of their 
implementation and learning capabilities in a general 

context remain unclear. For example , selecting a 
neural network architecture for a determined problem 
is a complex task, involving many factors as 
complexity of the problem, size of the training set, 
training algorithm, etc, that affect the network 
performance in a not completely understood form [3]. 

In this work we construct modular architectures 
and  analyze their generalization properties for three 
different problems: parity function, face expression 
recognition and diabetes diagnosis. In next subsection  
some general results about generalization properties 
of feed forward neural networks are presented; in 
section 2 the implementation and  results of the 
simulations are shown, to finally discuss them and 
give some recommendations on how to implement 
modular networks. 

 
 

1.2   Motivation 
Generalization is the property to respond with 
accuracy to inputs signals that have never seen before  
by the system, being one of the most attractive 
properties of neural networks. Answers to general 
questions such as: How many examples are necessary 
to obtain valid generalization? or What size neural 



nets gives best generalization? can be addressed 
within the context of the VC dimension results [3][4]. 
This theory suggests that smaller networks generalize 
better than larger ones as a consequence of a reduced 
number of free parameters, and also that smaller 
networks should be less sensitive to overfitting (for a 
detailed description on these issues we refer the 
reader to [4] and references therein). However, 
empirical results contradict the previous hypothesis 
showing that in some cases larger neural nets trained 
with backpropagation perform better than smaller 
ones. One reason, explaining partially this behavior, 
can be the early stopping of the learning procedure 
preventing an excessive growth of the synaptic  
values and keeping the state of the system in a 
reduced exploratory space [5].  

On the other hand,  in [6] a method was 
developed for selecting examples in feed forward 
networks, and through its application good 
generalization can be obtained with reduced set of 
examples. The general results  agree with those from 
the VC theory, in the sense that modular neural 
networks, having less number of weights than fully 
connected architectures, would need less examples to 
generalize; but also it was shown that the scaling 
properties of modular networks are much better than 
those for monolithic architectures [7]. 

With the previous ingredients as background, we 
decided to test on three different problems the 
generalization properties of modular vs. fully 
connected networks exploring some of the above 
mentioned issues. 

 
 

2   Simulation studies 
We select three different problems to carry on our 
study: the parity function was chosen because some 
of the previous results were obtained through its 
study [7]; the other two problems were selected as 
they are considered "real world" problems. From the 
particular features of each problem, we distinguish 
the following characteristics: first, parity has boolean 
input values while the others two problems have real 
ones; second, a salient difference concerns the size of 
the training set, better evaluated  comparatively with 
the number of synaptic weights: for the parity 
function the whole exact set of examples is available, 
in the face expression recognition task the training set 
is very small and in the third case, diabetes diagnosis, 
the number of available examples is somewhat large 
but includes some missing data that has been 
replaced with fixed values, introducing a certain level 
of error [8]. In table 1 these features of the problems 

are shown, while in table 2 the number of weights 
used for the different architectures are presented. 
 

Problem Inp. Outp. Inp.Type Examples 
     
Parity 8 1 boolean 256 
Face Expr. Recogn. 48 3 real 56 
Diabetes Diagn. 8 1 real 768 
 
Table 1. Some features of the three analyzed 
problems. 
 
 
2.1   The parity function 
The parity function is one of the most used functions 
for testing learning algorithms, both for historical  
and complexity reasons [7][9], being a function 
considered “hard”, as learning algorithms does not 
perform very well on it. 

The simulations were carried on a modular 
architecture with 8 input neurons, five hidden layers 
containing 20 neurons and a fixed number of 
synapsis per neurons equals to 2. In figure 1 the 
whole structure of the network its shown, being 
possible to observe the constituting modules with the 
structure 2-2-1, normally used to solve the XOR 
function. To build the modular network we use the 
property that the parity of an arbitrary number of bits 
can be computed by dividing them into groups and 
computing the parity of every group independently. 

 

 
 

Figure 1. Tree-like modular network used to compute 
the 8-bit parity function. 

 
We first use backpropagation as learning 

algorithm but it was not possible to find solutions to 
the problem, despite the fact that this architecture is 
able to compute the parity function [7]. The problem 
of backpropagation in computing parity seems to be 
more general, as previous results found that neutral 
statistical problems, which parity belongs to, are very 
difficult to learn [10]. We also tested different 
problems on the same architecture and the 



performance of backpropagation did not improve 
much, except for the case of trivial functions. Thus, 
we change the learning algorithm to simulated 
annealing and also restrict  the values of the synaptic 
weights to discrete values [+1, -1], obtaining results 
in clear agreement with the theoretical predictions 
mentioned before [7]. For comparison  we also 
analyze the performance on a  monolithic network 
with a single hidden layer containing 8 neurons fully 
connected. In figure 2 the generalization error as a 
function of the number of examples in the training set 
is shown for both architectures. 
 

 
 

Figure 2. Generalization error vs. fraction of training 
of examples in the training set for modular and 
monolithic architectures used to compute the 8-bit 
parity function. 
 
 
2.2   Face expression recognition 
Face expression recognition is a very important task 
of human cognition playing an important role in 
several activities where human interacts. An 
increasing interest has raised in last years for 
constructing artificial systems that could interact with 
humans in a more natural way [11]. 

Following recent results in which was shown that 
face expression recognition involves different 
specialized areas of the brain [12], we construct a 
modular system where each of the modules 
specializes in a different emotion. This type of 
modular networks, also known as mixtures of 
experts, has been successfully used in many 
applications [2][3]. 

We use as training set, images taken from the 
Yale face database [13], selecting a set of 56 
examples of 14 subjects displaying four different 
expressions: neutral, happy, sad and surprise. In 
figure 3 a sample subject displaying the four 
emotions is shown, being  also indicated in the 
rightmost expression (surprised face), through a 
white rectangle, the area (24x8 pixels) cropped from 
the original images and used as input of the networks. 

 

 
 
Figure 3. Sample subject showing the four full faces 
expressions (neutral, happy, sad and surprised). The 
white rectangle inside the rightmost figure 
corresponds to the area cropped and used as input for 
the neural networks. 
 

Being the training set quite small compared to 
the number of pixels per image and consequently to 
the possible number of weights of an architecture, we 
reduce the dimension of the input through a hebbian 
unsupervised process, implemented in the network 
with one layer of neurons. For the scope of this work, 
we consider this first layer as a preprocessing  stage 
that reduces the number of inputs from 192 down to 
48. Thus, the modular network structure has 48 input 
units connected to three modules specialized on the 
expressions, those different from the neutral one. 
Each module has one hidden  layer and a single 
output that has to be activated when the input image 
displays the same expression in which the module is 
specialized on. The optimal number of hidden units 
was found to be 3 for happy and surprise modules, 
while 4 units were optimal for the sad one. A cross 
validation  training procedure was used; first, the 
network was trained with 12 subjects and the 
performance was validated on a 13 one, obtaining a 
measure of when to stop the training process  to 
avoid overfitting and get a better generalization. Then 
the network was retrained with 13 subjects and the  
generalization error was measured on the left out one,  
averaged over all the 14 possible cases and over 10 
initial conditions in each case. Backpropagation with 
learning constant η = 0.05 was used. 

To compare the performance of the modular 
architecture,  a fully connected neural network were 
implemented, with a number of hidden units varying 
from 3 to 15, finding the best results with the larger 
network. In table 2 results are presented for both 
modular and monolithic architectures, showing an 
improvement of generalization around 20% when 
using the modular one. Also in the table, two results 
are indicated for the case of monolithic networks to 
appreciate the effect of network size. 

 
 
 
 



2.3   Diabetes diagnosis 
In this problem taken from the Proben1 database [8], 
the diabetes state of Pima Indians has to be diagnosed 
based in 8 parameters including personal data (age, 
number of times pregnant, etc.) and the results of 
medical examinations (glucose tolerant test, blood 
pressure, etc.). The examples set (diabetes1.dt) 
contains 768 cases, from which  384  ones are used 
for training, 192 for the validation step and the 
remaining 192 for testing the generalization 
performance, as indicated in the database protocol, 
that we follow to allow further comparisons. The 
input values are all real, normalized between [0,1] 
and the diabetes state of the patients is indicated by a 
boolean variable. 

Construct a modular architecture for this problem 
is by no means clear, in the sense that the problem is 
not intrinsically modular, as parity, neither is possible 
to apply the approach used in the expression 
recognition case as this problem has a single output. 
The criteria used for selecting the modules was based 
on a study of the correlation between pairs of inputs, 
clustering in a same module those with higher values. 
We use as correlation function the quadratic distance 
between the input values averaged over all the 
training examples, as the results were easier to 
interpret than those obtained with other measures.  
From the analysis we obtained two groups of three 
inputs bits clearly defined by the correlation values; 
for the remaining two inputs, a first idea was to 
cluster them in another group, but as their correlation 
was not significant we test two possible architectures 
containing two modules of four units each, to select 
the one that gives a best performance. In that way the 
structure of the network has one hidden layer with 
two modules comprising four units each, followed by 
a second hidden layer that contains one output neuron 
for each module both converging to a single output 
unit. 

 
In table 2 the results obtained with the modular 

architecture and also those obtained with two fully 
connected network with 4 and 8 hidden units are 
shown. For comparison, it is worth noting that in [8] 
a generalization error of  24.1% was the lowest 
generalization error obtained, using a fully connected 
network. All the networks were trained using 
backpropagation  with learning constant η = 0.05 and 
momentum constant α = 0.5. 
 
 
 
 
 

Problem Architect. Weigths Error 
    
Parity modular 

monolithic 
42 
72 

  0.0 % 
21.7 % 

Face Expr. Recogn. monolithic 
monolithic 
monolithic 

490 
255 
765 

15.1 % 
18.9 % 
18.6 % 

Diabetes Diagn. modular 
monolithic 
monolithic 

44 
36 
72 

21.4 % 
23.2 % 
24.0 % 

 
Table 2. Generalization error and number of weights 
of the architectures used for solving the parity 
function, a face expression recognition task and a 
diabetes diagnosis case with modular and monolithic 
networks. 
 
 
3   Discussion 
We analized the generalization ability of modular and 
fully connected networks on performing three 
different tasks: parity, face expression recognition 
and diabetes diagnosis. The initial idea was, using 
backpropagation as learning algorithm, analyze the 
behavior of the generalization error for different 
network sizes. However, it was not possible to obtain 
solutions for the case of the parity function, despite 
the fact that the used architecture can compute it. 
Instead, simulated annealing was used to train the 
parity networks obtaining a much better 
generalization ability with the modular architecture 
than with the monolithic one, confirming the 
theoretical results [8]. In the other two cases  we 
successfully use backpropagation, obtaining also 
better results with the modular networks. In table 2 
the obtained results are presented. For the face 
recognition problem a network of the type known as 
mixture of experts was used, with each module 
specialized on one expression. The results show an 
improvement on the generalization ability around 
20% compared with fully connected networks, noting 
that the best values with monolithic architectures 
were obtained with the largest network. This result 
support previous empirical ones about the good 
performance of backpropagation combined with early 
stopping in large networks [5]. The results are shown 
in table 2, where for monolithic architectures two 
values corresponding to different network sizes are 
displayed, one corresponds to the optimal value 
found. In the diabetes diagnosis case, at least up to 
our knowledge, was no clear how to construct a 
modular network, so we developed an architecture 
based on the correlations of input values. We 
compare its performance with the results obtained on 
similar architectures, but with a different 
arrangement of the inputs, obtaining better results 



with the designed architecture. It will be interesting 
to validate this method on other problems to see its 
general applicability. The performance of modular 
architectures in this case were somewhat greater than 
when using monolithic architectures, but 
comparatively lower than in the previous cases. Both 
in modular and monolithic architectures an optimal 
size network was found, but being fully connected 
networks less sensitive to size increasing. 

We can conclude saying that restricting the size 
of a network architecture does not seem to improve 
much the generalization ability, given that 
backpropagation combined with early stopping is 
quite effective with large size networks, but if this 
reduction on the number of weights is done within a 
modular architecture a better generalization ability 
could be achieved. An interesting point for further 
research is to look for learning algorithms, that  
perform better than backpropagation on modular 
networks with many hidden layers, permitting a 
deeper exploration of their abilities. 
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