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Abstract: - The Bayesian Information Criterion (BIC) was presented to obtain the appropriate structure, via the 
number of hidden nodes, and a new algorithm was proposed to improve the convergence speed of backpropagation 
training method. The algorithm was obtained by employing the conjugate gradient method to solve the nonlinear 
part in the weights of the hidden layers and the Kalman filter to solve the linear part in the weights of the output 
layer. From simulation experiments with quarterly economic data on the exports and gross domestic product 
(GDP) in Thailand, it was found that the BIC and the algorithm could perform satisfactorily. 
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1  Introduction 
In recent years, artificial neural networks (ANNs) have 
been extensively used in various fields. Among them, 
backpropagation (BP) networks appear to be most 
popular and have been widely used in many applications 
[1, 2]. The BP method, introduced by Rumelhart et al. 
[3], is a supervised learning technique for training 
multilayer feedforward neural networks. The gradient or 
steepest descent method is used to train a BP network by 
adjusting the weights in order to minimize the system 
error between the known output given by the user 
(desired output) and the output from the network 
(network output). To predict the future outcome values 
with an acceptable level of accuracy, the network has to 
be trained with a large sample of historical data that have 
been collected over a given time period.  

BP networks have a number of shortcomings. One is 
how to select the appropriate structure of the network for 
a specific problem. As the number of nodes in the input 
and output layers are application dependent and a 
network with one hidden layer is sufficient in practical 
applications [4, 5], the remaining problem is how to 
choose the number of hidden nodes. Due to the use of the 
steepest descent method in the BP network, another 
shortcoming is its slow convergence (and no 
convergence in some cases).  

In the paper, we present a method for selecting the 
appropriate number of hidden nodes based upon the 
Bayesian Information Criterion (BIC) and an algorithm 
for improving the convergence speed of BP networks. 
Since the nonlinear neural network problem can be 

partitioned into the nonlinear part in the weights of the 
hidden layers and the linear part in the weights of the 
output layer, the algorithm is obtained by employing the 
conjugate gradient method for the nonlinear part and the 
Kalman filter for the linear part. Experimental runs of 
our simulation studies were intended to assess the 
performance of these algorithms. 
 
 
2 Proposed Method for Appropriate 
Structure 
Once the number of nodes in the input and output layers 
have been decided, that normally depends upon the 
application under consideration, the important and 
difficult problem is how to optimally select the number 
of the hidden nodes and hidden layers. In addition, a 
network with one hidden layer is sufficient in practical 
applications [4, 5].  

Since the appropriate number of hidden nodes is not 
known in advance, it is usually determined by trial-and-
error. Hence, large amount of computation time is 
required. Generally, when the number of parameters 
(weights and biases) increases, the mean squared error 
(MSE) is expected to be reduced. Therefore, in order to 
compare several different models having different 
numbers of parameters, it is difficult to identify which 
network model is the best by using only the MSE [6].  

Instead of the MSE, the Bayesian Information 
Criterion (BIC) can be utilized to select the best model 
from the candidate models having different number of 



parameters. The BIC, developed independently by 
Kashyap [7] and Schwarz [8], can be expressed as 
follows: 

BIC  =  M ln(MSE) + P ln(M)  (1) 
where M is the number of training patterns and P is the 
number of parameters involved in the model. 

It is noted that while the MSE is expected to 
progressively improve as more parameters are added to 
the model, the BIC penalizes the model for having more 
parameters (by a penalty term defined in the second part 
of Eq. 1) and therefore tends to result in a smaller model. 
The criterion can be used to assess the performance of 
the overall network, as it balances modelling error 
against network complexity. The proposed method is 
presented to systematically choose the appropriate 
number of hidden nodes using the procedure that 
gradually increases the network complexity and employs 
this criterion for terminating the network training as 
follows: 

 
1. Create an initial network with one hidden node and 

randomize the weights. 
2. Train the network using with a chosen method e.g. the 

proposed algorithm described in the next section (or 
the original BP algorithm) until the system error has 
reached an acceptable criterion. A simple stopping 
rule is introduced to indicate the convergence of the 
algorithm. It is based upon the relative error of the 
sum of squared errors (SE): 

1)SE(
)(SE1)SE( ε≤−+

t
tt   (2) 

where ε1 is a constant that indicates the acceptable 
level of the algorithm and SE(t) denotes the value of 
SE at iteration t. 

3. Check for terminating the selection of the network. A 
termination criterion is suggested based on the 
relative BIC as follows: 

2)BIC(
)(BIC1)BIC( ε≤−+

k
kk   (3) 

where ε2 is a constant that indicates the acceptable 
level for the structure of the network and k denotes 
the number of hidden nodes of the network. If the 
relative BIC is less than or equal to ε2 or the current 
BIC is greater than the previous, go to step 4; 
otherwise add a hidden node and randomize the 
weights then go to step 2. 

4. Reject the current network model and replace it by the 
previous one, then terminate the training phase. 

 
 

3  Proposed Algorithm for Improving the 
Convergence Speed 
Recently, Scalero and Tepelenlioglu [9] proposed an 
improved method for training BP networks. This method 
is a modified form of the BP method along with a 
Kalman filter (KF) approach used to derive a training 
algorithm, which is an order of magnitude faster than the 
generalized delta rule. Even though this method 
overwhelmingly outperforms the BP method, it still uses 
error signals generated in the same way as in the BP 
method to estimate the desired output of the hidden 
layers.  

By partitioning the nonlinear neural network 
problem into the nonlinear part in the weights of the 
hidden layers and the linear part in the weights of the 
output layer, a new algorithm is obtained by combining 
the conjugate gradient method and the KF algorithm. The 
conjugate gradient method and the KF algorithm are used 
for the nonlinear and linear parts, respectively.  

The system error (overall patterns) between the 
desired output and the output from the network obtained 
just before being subject to the nonlinear activation 
function at the output layer is given as: 

( )∑∑
= =

−=
M

p

N

k
pLkpk

L

ydE
1 1

2

2
1

          (4) 

where dpk and ypLk are the desired and network pre-image 
outputs for the kth node in the output layer L at the pth 
training pattern, respectively, M is the total number of 
training patterns and NL is the number of nodes in the 
output layer. Substituting ypLk by its expression, Eq. 4 
becomes 
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where xp,L-2,l is the network output for the lth node in 
layer L-2 at the pth training pattern. It should be noted 
that from Eq. 5, the weights of the output layer are linear 
whereas the weights of the hidden layers are nonlinear.  

To find the weights of the output layer wLKi, we 
minimize the system error E with respect to the weights 
for node k in the output layer. So 
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Equation 6 can be rewritten as  
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Substituting the network pre-image output ypLk at the 
output layer by its expression gives: 
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Changing the summation on the right-hand side to a 
vector in Eq. 7, we have 
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for i = 0 through NL-1.  
Defining 
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Then Eq. 8 becomes 
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pRw 1−=Lk    (12) 

 
This results in the proposed algorithm, which can be 
summarized as follows: 
 
1. Randomize all weights and biases as well as set the 

initial value to the inverse matrix R-1, where R is the 
correlation matrix of the network outputs in the last 
hidden layer. 

2. For each training pattern pair (xp0, op) where xp0 is the 
input vector and op is the desired output vector at the 
pth training pattern: 

(a)  Calculate the network pre-image output ypjk and the 
network output xpjk starting with layer j from 1 and 
proceeding layer by layer toward the output layer L 
for every node k. Usually, the sigmoid function is 
selected as an activation function: 
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where Nj is the number of nodes in the jth layer and ρ 
is the sigmoid slope. 

(b)  Calculate the error signals for the weights at the 
output layer L and backtracking layer by layer from 
L-1 through 1: 
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(c)  Calculate the gradient vector for each layer j from 1 
through L-1: 
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where t denotes the present iteration number.  
3. Calculate the gradient vector of all training patterns 

for each layer j from 1 through L-1: 
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where M is the total number of training patterns. 
4. Calculate the search direction for each layer j from 1 

through L-1: 
( )t
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if  t  is the first iteration or an integral multiple of the 
dimension of w; otherwise 
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where β t is computed according to a selected form 
such as that of Fletcher-Reeves [10]. 

5. Calculate the learning rate (step size) λt determined 
by an approximate line search to minimize the error 
function E(wt+λtst)  along the search direction  st at 
the tth iteration. 

6. Update the weight vector for each hidden layer j from 
1 through L-1: 
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7. For each training pattern: 
(a) Calculate the network pre-image output ypjk and the 

network output xpjk starting with the layer j from 1 
through the output layer L. 

(b) Calculate the Kalman gain kpL and update the inverse 
matrix 1−

pLR  for the output layer L: 
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where bL is the forgetting factor of the output layer. 

(c) Calculate the desired pre-image output at the output 
layer: 
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(d) Update the weight vector at the output layer L: 
( ) LpLkpkpL

t
Lk

t
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where λL is the learning rate of the output layer. 
8. Repeat steps 2-7 until the system error has reached an 

acceptable criterion. 
 



Fig. 1 Quarterly data on exports and GDP of Thailand 

 
4  Experiments 
 
4.1  Data Employed 
Exports have become essential not only for the economic 
stability of a nation but also for its continuous growth, 
while gross domestic product (GDP) is an important 
indicator to measure the economic growth rate of each 
country. In this study, quarterly data on the exports and 
GDP of Thailand from 1987 to 1996 were used as shown 
in Fig. 1. The export and GDP data were obtained from 
the Bank of Thailand (BOT) and Thai Development 
Research Institute (TDRI), respectively. In each case, the 
data are divided into two parts: 1987 to 1993 for 
calibration (training) and 1994 to 1996 for validation 
(testing).  

Figure 1 shows that the tendency of export and GDP 
data to increase over the calibration phase while it 
increases significantly in the validation phase. This 
results in good performance in the training phase, but 
worse in the testing phase. Therefore, trend removal for 
the residual series of export and GDP data is used. 
Before the data are presented to the network, the data 
after the trend removal are converted by a linear (affine) 
transformation to the interval [0.05, 0.95]. In this study, 
the input to the network may consist of the past values of 
exports (X) and GDP. The export value at time t+1 is 
treated as a function of past values of exports at times t, 
t-1, t-2, and t-3 and GDP at times t and t-1. The GDP at 
time t+1 is also treated as a function of past values of 
GDP at times t, t-1, t-2, and t-3 and exports at times t and 
t-1. The forecasting equations with lead time of one 
quarter of exports and GDP are given as follows: 

 
X(t+1) = g(X(t), X(t-1), X(t-2), X(t-3), GDP(t), GDP(t-1)) 
GDP(t+1) = g(GDP(t), GDP(t-1), GDP(t-2), GDP(t-3), 

X(t), X(t-1)) 
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4.2  Experimental Conditions 
In order to compare the performance of various 
algorithms, the same initial weights were used. During 
the training phase, the learning rate and temperature 
learning rate were set to 0.01, the momentum and 
temperature momentum coefficients were set to 0.5. The 
forgetting factor of 0.99 was found suitable. The 
temperature of each neuron was set randomly to lie 
within the range [0.9, 1.1] and the sigmoid slope was set 
to 1. The method described in Section 2 is used to 
determine the number of the hidden nodes. The values 
adopted for ε1 and ε2 were 0.0001 and 0.01, respectively. 
To find the optimal step size of the conjugate gradient 
method, the approximate line search method with 
backtracking by quadratic and cubic interpolations of 
Dennis and Schnabel [11] was used. To calculate the 
search direction, the formula of Fletcher-Reeves [10] was 
employed based on its good performance obtained in 
preliminary experiments. 

 
4.3  Performance Criterion 
In order to evaluate the performance of the network 
model, the efficiency index (EI) introduced by Nash and 
Sutcliffee [12] was used: 

EI = SR / ST   (26) 
 

SR = ST – SE   (27) 

∑
=

−







 −=

M

i
i yy

1

2

ST   (28) 

∑
=







 −=

M

i
i

^

i yy
1

2

SE   (29) 

∑
=

−

=
M

i
iyMy

1

)(1/   (30) 

where SR  = Variation explained by the model, 
ST  = Total variation, 
SE  = Total sum of squared errors, 
yi    = Desired output at time i, 
−

y    = Mean value of the desired output, 

i

^

y  = Network output at time i, 
M   = Number of training patterns. 

 
4.4  Results 
Firstly, we trained the network by using the BIC 
algorithm as described in Section 2. For the BIC method, 
the 6-1-1 network is initially selected. As the algorithm is 
terminated with the structure 6-3-1 network for exports 
and the structure 6-2-1 for GDP, the 6-2-1 network for 
exports and the 6-1-1 network for GDP are the best, as 
illustrated in Table 1. 

Calibration Validation 



Fig. 4 Comparison between observed and 
forecast values for exports (1988-1996) 

Fig. 5 Comparison between observed and 
forecast values for GDP (1988-1996) 

Earlier, Sureerattanan and Phien [13] proposed an 
algorithm (referred to as Algorithm 1) to improve the 
convergence speed of BP networks by applying the 
adaptive neural model with the temperature momentum 
term to the KF algorithm with the momentum term. After 
the appropriate structure of the network is obtained, we 
compare the BP, KF, conjugate gradient, Algorithm 1 
and the proposed algorithm (referred to as Algorithm 2). 
Figures 2-3 show the learning curve between these 
system errors and the iteration numbers for the 
algorithms during training of exports and GDP, 
respectively. The results confirm that Algorithms 1 and 2 
converge very fast with a small value for system error. 
The calculated results of the efficiency index of each 
algorithm are provided in Tables 2 and 3 for training and 
testing phases, respectively. The total computation time 
of the algorithms for their convergence (on a PC Pentium 
Pro 180 MHz) is given in Table 4. It is clear that 
Algorithm 2 required the least computation time for 
convergence. The observed and forecast values of 
Algorithm 2 in the calibration and validation phases are 
shown in Figs. 4 and 5, respectively. 
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Table 1 Computed values of efficiency index (EI) and BIC 
6-1-1 6-2-1 6-3-1 Exports and 

GDP EI BIC EI BIC EI BIC 
Exports 0.93 -65.44 0.98 -68.99 0.98 -43.74 
GDP 0.96 -54.62 0.96 -29.30   

 
Table 2 Comparison between BP, KF, Conjugate gradient, Algorithms 1 and 2 in calibration phase 

BP KF Conjugate gradient Algorithm 1 Algorithm 2 Exports 
and  

GDP 
SE EI Epoch SE EI Epoch SE EI Epoch SE EI Epoch SE EI Epoch

Exports 0.15 0.98 10,215 0.14 0.98 890 0.15 0.98 1,928 0.14 0.98 354 0.14 0.98 169 
GDP 0.76 0.96 1,0637 0.75 0.96 1,166 0.76 0.96 3,712 0.75 0.96 561 0.75 0.96 222 

Fig. 2 Learning curve of exports for BP, KF, 
Conjugate gradient, Algorithms 1 and 2 

Fig. 3 Learning curve of GDP for BP, KF, 
Conjugate gradient, Algorithms 1 and 2

Calibration Validation 

Calibration Validation 



Table 3 Efficiency indices of BP, KF, conjugate gradient, and Algorithms 1 and 2 in validation phase 
Exports and GDP BP KF Conjugate 

gradient 
Algorithm 1 Algorithm 2  

Exports 0.77 0.77 0.76 0.77 0.79 
GDP 0.92 0.94 0.92 0.94 0.94 
 

Table 4 Total computation time (in seconds) of BP, KF, Conjugate gradient, Algorithms 1 and 2 
Exports and GDP BP KF Conjugate 

gradient 
Algorithm 1 Algorithm 2  

Exports 57 19 12 8 2 
GDP 59 23 20 11 2 
 
 
5  Summary 
We presented the Bayesian Information Criterion 
(BIC) for choosing the appropriate number of hidden 
nodes and algorithm for speeding up the convergence 
of BP networks. The algorithm was devised by 
employing the conjugate gradient method to solve the 
nonlinear part and the Kalman filter algorithm to solve 
the linear part. The experimental results show that the 
BIC can be employed to determine the appropriate 
number of the hidden nodes, and the proposed 
algorithm can improve the convergence speed of the 
BP networks and also gives good performance in 
testing phase.  
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