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Abstract: - In this paper we describe a method for generating high school timetables using an Evolutionary 
Algorithm (E.A.) with a new set of genetic operators inspired on the Infected Genes Evolutionary Algorithm 
[14]. We show that widening region of infection considered in [7] leads to a very significant increase in the 
performance of the E.A.. Comparative tests between the E.A. with and without the improved Bad-Gene 
operators were made using the data of a large Portuguese high school. These clearly show that the improved 
the Bad-Gene operators result in a significant improvement in performance. 

 
Key-Words: - Evolutionary Algorithms, Timetabling, Infected Genes. 

 

1  Introduction 

In this section we briefly describe the 
characteristics of the school-timetabling problem. 
 

1.1 The School Timetabling Problem 

Given c classes, t teachers and r classrooms it is 
required to build a set of c+t+r timetables satisfying 
the needs of the school and respecting the 
restrictions in the assignment of the lessons. 
The restrictions or constraints are usually divided in 
two types - hard and soft [3],[6] ,[12].  The 
violations of a hard constraint always lead to invalid 
timetables. The hard constraints considered in this 
algorithm are: 
 

• Lessons of a class, teacher or classroom 
cannot be assigned to the same time slot. 
If this happens we say the lessons are 
superimposed. 

• Lessons of a class of the same subject and 
type cannot be assigned to time slots on 
the same day. 

• A lesson of a class, teacher or classroom 
can not be assigned to a time slot where an 

unavailability exists. We define 
unavailabilities through preference maps, 
which will be discussed later. 

• A classroom capacity may not be 
exceeded. 

• The necessary breaks must be respected. 
Example: lunch break. 

The soft constraints are preferences. Their 
violations affect the quality of the results but do not 
imply invalid timetables. The soft constraints 
considered are: 
 

• The gaps between lessons of students and 
teachers should be minimized. 

• Classes and teachers have a limit to the 
number of consecutive time slots with 
lessons. 

• Classes should either have lessons in the 
morning shift or afternoon shift. 

• The preferences of teachers, classes and 
classrooms should be respected (see 
preference maps). 



 

1.2 The Data Structures 

It is difficult to conceive a data-structure that 
makes the representation of the many different 
assignment configurations possible. Some schools 
have special needs in the assignment of the lessons 
and a good data structure must be as flexible as 
possible to enable codification of any situation that 
may occur. The data-structure used in this E.A. is 
composed of the following characteristics: 
 

• Lessons of the same subject, duration and 
type (Laboratory, Practical, Lecture), 
taught to the same class are grouped 
together in sets we call lesson-sets. 

• A Class is divided into subclasses when 
there are sub-groups of students that 
attend different lessons. 

• Enables the specification of the classroom 
to which a lesson must be assigned or a set 
of classrooms from which one is chosen by 
the algorithm. 

• Permits the codification of cases in which 
more than one class attends a lesson or 
more than one teacher lectures a class 
simultaneously. 

• Enables the teachers preferences to be 
taken into account  

The most important files of the data structure are 
the lessons database and the preference maps. 

1.2.1 Lesson Database 

The lesson database consists of the list of all the 
information required by each lesson-set. An 
example of a lesson set codification can be seen in 
table 1.  
 
Cl Sub SC T Dur NL T Cl 
Cl2 A 2 Lab 180 1 10 Cr98 
 

Cl – Class(es)  
Sub – 
subclass(es) 
SC – Subject 
Code  
T – Type 

Dur - Duration (  in minutes) 
NL - Nº of lessons  
T - Teacher(s) 
Cl - classroom(s) or set of 
classrooms(s) 

 

Table 1.- Example of codification of a lesson-set in the 
lesson database 

1.2.2 Preference Maps  

For every class, teacher, classroom and lesson-set 
there are maps where, for each time slot, a 
preference for the assignment of lessons can be 
defined. The levels of preference decrease from 1 
to 4, preference 4 meaning that the time slot is 
forbidden. For preference 2 and 3 assignment is 
allowed but increasingly penalised. 
 

 Mon. Tues. Wed Thurs. Fri. 
8.00 1 1 1 1 4 
9.00 1 4 1 1 4 
10.00 1 4 1 1 4 
11.00 1 1 1 1 4 
12.00 1 1 1 1 4 
13.00 3 3 3 3 4 
14.00 3 3 3 3 4 
15.00 3 3 3 3 4 
16.00 3 3 3 3 4 
17.00 3 3 3 3 4 

Figure 1 - Preference map of a teacher who prefers 
lessons in the morning and cannot teach on Fridays. 

2 The Algorithm 

Before we describe the algorithm some definitions 
are needed. We define time slot duration as the 
greatest common factor of all the different lesson 
durations i.e. if we only have sixty-minute and 
ninety-minute lessons then the time slot duration 
will be thirty minutes. The dimension (number of 
time slots) of each timetable is defined as: 
dimension= 
number_of_days*number_of_time_slots_per_day 

2.1 Chromosome Representation 

Every chromosome in this algorithm represents a 
solution to the timetabling problem. Each 
chromosome therefore contains only the 
information that varies between different solutions, 
which is the sequence of [classroom, starting time 
slot] of each lesson as shown in figure 2. The 
remaining information required to build the 
timetables, the constant data, is stored in an array.  

 

 

 



 

Figure 2.- Representation of two lesson-sets -  the first 
with three lessons and the second with only one. 

2.2 Initialization 

To create the first population of chromosomes the 
algorithm assigns a classroom and time slot to each 
lesson. First, if a classroom is not specified in the 
database one is chosen among those available in 
the corresponding classroom set. Then, the lesson 
starting time slot is randomly chosen within those 
that do not result in a violation of the forbidden 
timeslots of the corresponding preference maps. 

2.2.1 Lessons Assignment Priority 

The order in which a lesson is assigned will greatly 
influence the performance of the algorithm 
because the smaller the lesson duration, the easier 
it is to find a place to put them. The lessons are 
therefore ordered [8] by the following criteria: 
 
[C1]. Duration of each lesson. Longer lessons are 

assigned first. 
[C2]. The ratio between the duration and possible 

starting time slots. Those with a larger ratio 
are assigned first. 

[C3]. The lessons with predefined classrooms are 
assigned first. When a block of classrooms is 
available it is easier to find an empty one.  

[C4]. Teachers with a higher priority (supplied by 
the user) have their lessons assigned first. 

2.3 Repair Function 

Due to the fact that the creation of new 
chromosomes with the initialisation or genetic 
operators is completely random, superimposed 
lessons are frequent and if a repair function [3] is 
not used the evolution of the E.A. will be much 
slower. The repair function implemented in this 
algorithm is used during the cost evaluation. When 
superimposed lessons or two lessons with the same 
code on the same day are found, the function 
determines all the valid unoccupied time slots to 
which the lesson that causes the violation can be 
assigned. The new starting time slot is randomly 
chosen from those found. If no free time slots are 
found then the gene value remains unaltered. 

2.4 Chromosome Evaluation 

The evaluation of each chromosome of the 
population is done by the following cost function 
[3], [10]: 
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where C is the number of violations of a certain 
constraint and w its corresponding weight.  
The fitness function used in this E.A. is the 
following [2]: 
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Comparative tests showed us that a value of 
approximately 0.5 for k  maximises the 
performance of the E.A. 

2.5 Selection Method and Elitism 

The selection of the chromosomes involved in 
genetic operators is done by Roulette-wheel 
selection [8]. In this method the probability that a 
chromosome is selected is proportional to its 
fitness. Elitism was used and tests made with real 
data showed that the ideal number of 
chromosomes to pass from one generation to the 
next is approximately 10% of the population. 

2.6 Genetic Operators 

In this algorithm we used some typical genetic 
operators (one point crossover, multipoint 
crossover, uniform crossover and single gene 
mutation) and introduced two new operators 
described below. The probability of each operator 
is changed according to its relative success rate 
(ratio between the number of times the operator is 
used and the number of best chromosomes it 
generates) of each one. 

2.6.1 Bad Gene Operators  

In this algorithm bad genes are those that belong to 
a class, teacher or classroom in which a violation 
of a hard constraint occurs that cannot be repaired 
by the repair function. Genes are flagged as bad in 
order to focus the actions of the bad-gene 
operators.  

2.6.1.1 Bad Gene Crossover 
This operator chooses two parents randomly and 
exchanges the bad genes of the better of the two 
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with the related genes of the other. Classes, 
teachers and classrooms in which a violation of a 
hard constraint occurs, that cannot be repaired by 
the repair function are therefore swapped. In 
figure 3 we can see the graphic representation of 
the bad genes crossover.  
 
Parents:  
CR TS CR TS CR TS CR TS CR TS CR TS 

11 10 15 24 10 15 101 11 49 11 33 58 

 
CR TS CR TS CR TS CR TS CR TS CR TS 

11 10 15 12 10 13 101 11 13 11 13 58 

 
Children: 
CR TS CR TS CR TS CR TS CR TS CR TS 

11 10 15 12 10 13 101 11 49 11 33 58 

z 
CR TS CR TS CR TS CR TS CR TS CR TS 

11 10 15 24 10 15 101 11 13 11 13 58 

Figure 3 – Bad genes crossover. White alleles refer to 
bad genes. 

2.6.1.2 Bad Gene Mutation 
This mutation randomly changes one bad gene of a 
selected chromosome. 

3 Results 

3.1 Performance  

To test the efficiency of the bad gene operator we 
used the information of the 96/97 timetables from a 
large high school called DFL. In Table 2 we can 
see the characteristics of this school. 
 

Classes 41 
Teachers 109 
Class-rooms  37 
Time slot duration 60 min. 
Time slots to be assigned 1311 
Number of lessons 472 
Rate time slots/teachers 12 
Rate time slots /classrooms  69% 

Table 2. – Data from the DFL school. 

The weights used in the cost function are shown in 
Table 3. These values lead the algorithm to 
eliminate the violations of hard constraints first and 
then to minimise the violations of the soft 
constraints. 
 

Table 3 .– Weights used in the cost function. 

3.2 Improvements 

In figure 4 we can see the improvement in the 
E.A. performance caused by the introduction of 
the bad genes operators. For each configuration, 
the E.A. was run 15 times for 35000 chromosome 
evaluations. The results shown in fig. 4 refer to the 
evolution of the mean values of the cost of the best 
chromosome. Configuration A refers to an E.A. 
with the typical monopoint, multipoint and uniform 
crossover and mutation. Configuration B adds a 
previous version of the bad gene mutation 
discussed in [7] to these operators. In this version 
the mutation is confined to the genes that give rise 
to the violation of a hard constraint that cannot be 
repaired. Configuration C is the configuration 
discussed above with the new bad gene operators 
with a wider region of infection. In this 
configuration the bad gene crossover replaced the 
uniform crossover operator. 

The tests were made under the following 
conditions: 
 
§ Population dimension: 40 
§ Elitism: 5 pass to next generation 
§ Starting values for the operators’ probability: 

0.225 for each crossover and one gene 
mutation per chromosome at a rate of 0.1. 

 

Constraint Weight 
Superimposed lessons/teacher 1.0 
Superimposed lessons/ Class 1.0 
Superimposed lessons/ classrooms  0.25 
Gaps in class timetables  0.008 
Gaps in teacher timetables 0.002 
Maximum number of lessons per day 
– class 

0.02 

Maximum number of consecutive 
lessons per day – class  

0.02 

Maximum number of lessons per day 
– teacher  

0.02 

Maximum number of consecutive 
lessons per day – teacher 

0.02 

Lessons of same subject and type 
on same day 

0.25 

Lunch Hour 0.02 

Bad genes in white 
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Figure 4 – Evolution of the algorithm with the following 
configurations: 

A – E.A. with Mono-point, multi-point and 
uniform crossover and mutation. 

B – E.A. with previous version of bad gene 
mutation  

C – E.A. with new bad gene operators.  

In configurations B and C we increase the 
convergence speed of the E.A. by making 5 copies 
of the best chromosomes and applying the bad 
gene mutation to them. These 5 chromosomes, 
together with the best 5 of the previous generation 
(elitism) and the 30 additional chromosomes 
created by crossover and mutation operators 
constitute each new generation.  

4 Conclusions 

The E.A. solves the problem presented satisfying 
all hard constraints and with very few soft 
constraint violations. We plan to obtain data from 
other schools to more thoroughly test the bad gene 
operators and good results are expected. 
We also tested a bad gene crossover with different 
crossover probabilities for bad genes. In this 
crossover, the bad genes that actually give rise to 
the violation of a hard constraint are always 
swapped and the others are swapped with a 50% 
probability. This crossover operator has a 
performance similar to that of configuration B.  
The new bad-gene operators result in a faster 
convergence of the algorithm but are only good for 
eliminating violations of hard constraints. When 
none of the hard constraints are violated the 
operators are useless. We are currently working on 

new operators that will be especially effective in 
this case. 
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