

Infected Genes Evolutionary Algorithm for School Timetabling

C. FERNANDES, J.P. CALDEIRA, F. MELÍCIO, A. ROSA

LaSEEB-ISR-IST, EST-IPS, I.S.E.L.
Techinical University of Lisbon

Av. Rovisco Pais, 1, TN 6.21, 1049-100 Lisboa
PORTUGAL

Abstract: - In this paper we describe a method for generating high school timetables using an Evolutionary
Algorithm (E.A.) with a new set of genetic operators inspired on the Infected Genes Evolutionary Algorithm
[14]. We show that widening region of infection considered in [7] leads to a very significant increase in the
performance of the E.A.. Comparative tests between the E.A. with and without the improved Bad-Gene
operators were made using the data of a large Portuguese high school. These clearly show that the improved
the Bad-Gene operators result in a significant improvement in performance.

Key-Words: - Evolutionary Algorithms, Timetabling, Infected Genes.

1 Introduction

In this section we briefly describe the
characteristics of the school-timetabling problem.

1.1 The School Timetabling Problem

Given c classes, t teachers and r classrooms it is
required to build a set of c+t+r timetables satisfying
the needs of the school and respecting the
restrictions in the assignment of the lessons.
The restrictions or constraints are usually divided in
two types - hard and soft [3],[6] ,[12]. The
violations of a hard constraint always lead to invalid
timetables. The hard constraints considered in this
algorithm are:

• Lessons of a class, teacher or classroom
cannot be assigned to the same time slot.
If this happens we say the lessons are
superimposed.

• Lessons of a class of the same subject and
type cannot be assigned to time slots on
the same day.

• A lesson of a class, teacher or classroom
can not be assigned to a time slot where an

unavailability exists. We define
unavailabilities through preference maps,
which will be discussed later.

• A classroom capacity may not be
exceeded.

• The necessary breaks must be respected.
Example: lunch break.

The soft constraints are preferences. Their
violations affect the quality of the results but do not
imply invalid timetables. The soft constraints
considered are:

• The gaps between lessons of students and
teachers should be minimized.

• Classes and teachers have a limit to the
number of consecutive time slots with
lessons.

• Classes should either have lessons in the
morning shift or afternoon shift.

• The preferences of teachers, classes and
classrooms should be respected (see
preference maps).

1.2 The Data Structures

It is difficult to conceive a data-structure that
makes the representation of the many different
assignment configurations possible. Some schools
have special needs in the assignment of the lessons
and a good data structure must be as flexible as
possible to enable codification of any situation that
may occur. The data-structure used in this E.A. is
composed of the following characteristics:

• Lessons of the same subject, duration and
type (Laboratory, Practical, Lecture),
taught to the same class are grouped
together in sets we call lesson-sets.

• A Class is divided into subclasses when
there are sub-groups of students that
attend different lessons.

• Enables the specification of the classroom
to which a lesson must be assigned or a set
of classrooms from which one is chosen by
the algorithm.

• Permits the codification of cases in which
more than one class attends a lesson or
more than one teacher lectures a class
simultaneously.

• Enables the teachers preferences to be
taken into account

The most important files of the data structure are
the lessons database and the preference maps.

1.2.1 Lesson Database

The lesson database consists of the list of all the
information required by each lesson-set. An
example of a lesson set codification can be seen in
table 1.

Cl Sub SC T Dur NL T Cl
Cl2 A 2 Lab 180 1 10 Cr98

Cl – Class(es)
Sub –
subclass(es)
SC – Subject
Code
T – Type

Dur - Duration (in minutes)
NL - Nº of lessons
T - Teacher(s)
Cl - classroom(s) or set of
classrooms(s)

Table 1.- Example of codification of a lesson-set in the
lesson database

1.2.2 Preference Maps

For every class, teacher, classroom and lesson-set
there are maps where, for each time slot, a
preference for the assignment of lessons can be
defined. The levels of preference decrease from 1
to 4, preference 4 meaning that the time slot is
forbidden. For preference 2 and 3 assignment is
allowed but increasingly penalised.

 Mon. Tues. Wed Thurs. Fri.
8.00 1 1 1 1 4
9.00 1 4 1 1 4
10.00 1 4 1 1 4
11.00 1 1 1 1 4
12.00 1 1 1 1 4
13.00 3 3 3 3 4
14.00 3 3 3 3 4
15.00 3 3 3 3 4
16.00 3 3 3 3 4
17.00 3 3 3 3 4

Figure 1 - Preference map of a teacher who prefers
lessons in the morning and cannot teach on Fridays.

2 The Algorithm

Before we describe the algorithm some definitions
are needed. We define time slot duration as the
greatest common factor of all the different lesson
durations i.e. if we only have sixty-minute and
ninety-minute lessons then the time slot duration
will be thirty minutes. The dimension (number of
time slots) of each timetable is defined as:
dimension=
number_of_days*number_of_time_slots_per_day

2.1 Chromosome Representation

Every chromosome in this algorithm represents a
solution to the timetabling problem. Each
chromosome therefore contains only the
information that varies between different solutions,
which is the sequence of [classroom, starting time
slot] of each lesson as shown in figure 2. The
remaining information required to build the
timetables, the constant data, is stored in an array.

Figure 2.- Representation of two lesson-sets - the first
with three lessons and the second with only one.

2.2 Initialization

To create the first population of chromosomes the
algorithm assigns a classroom and time slot to each
lesson. First, if a classroom is not specified in the
database one is chosen among those available in
the corresponding classroom set. Then, the lesson
starting time slot is randomly chosen within those
that do not result in a violation of the forbidden
timeslots of the corresponding preference maps.

2.2.1 Lessons Assignment Priority

The order in which a lesson is assigned will greatly
influence the performance of the algorithm
because the smaller the lesson duration, the easier
it is to find a place to put them. The lessons are
therefore ordered [8] by the following criteria:

[C1]. Duration of each lesson. Longer lessons are

assigned first.
[C2]. The ratio between the duration and possible

starting time slots. Those with a larger ratio
are assigned first.

[C3]. The lessons with predefined classrooms are
assigned first. When a block of classrooms is
available it is easier to find an empty one.

[C4]. Teachers with a higher priority (supplied by
the user) have their lessons assigned first.

2.3 Repair Function

Due to the fact that the creation of new
chromosomes with the initialisation or genetic
operators is completely random, superimposed
lessons are frequent and if a repair function [3] is
not used the evolution of the E.A. will be much
slower. The repair function implemented in this
algorithm is used during the cost evaluation. When
superimposed lessons or two lessons with the same
code on the same day are found, the function
determines all the valid unoccupied time slots to
which the lesson that causes the violation can be
assigned. The new starting time slot is randomly
chosen from those found. If no free time slots are
found then the gene value remains unaltered.

2.4 Chromosome Evaluation

The evaluation of each chromosome of the
population is done by the following cost function
[3], [10]:

nnwCwCwCechromossomCost +++=)(2211

where C is the number of violations of a certain
constraint and w its corresponding weight.
The fitness function used in this E.A. is the
following [2]:

] [1,0,)(__

_

∈= −

−

kkF bestaverage

best

costcost

costcost

cost

Comparative tests showed us that a value of
approximately 0.5 for k maximises the
performance of the E.A.

2.5 Selection Method and Elitism

The selection of the chromosomes involved in
genetic operators is done by Roulette-wheel
selection [8]. In this method the probability that a
chromosome is selected is proportional to its
fitness. Elitism was used and tests made with real
data showed that the ideal number of
chromosomes to pass from one generation to the
next is approximately 10% of the population.

2.6 Genetic Operators

In this algorithm we used some typical genetic
operators (one point crossover, multipoint
crossover, uniform crossover and single gene
mutation) and introduced two new operators
described below. The probability of each operator
is changed according to its relative success rate
(ratio between the number of times the operator is
used and the number of best chromosomes it
generates) of each one.

2.6.1 Bad Gene Operators

In this algorithm bad genes are those that belong to
a class, teacher or classroom in which a violation
of a hard constraint occurs that cannot be repaired
by the repair function. Genes are flagged as bad in
order to focus the actions of the bad-gene
operators.

2.6.1.1 Bad Gene Crossover
This operator chooses two parents randomly and
exchanges the bad genes of the better of the two

Room Time
slot 1

Room Time
slot 2

Room Time
slot 3

Room Time
slot 1

....

with the related genes of the other. Classes,
teachers and classrooms in which a violation of a
hard constraint occurs, that cannot be repaired by
the repair function are therefore swapped. In
figure 3 we can see the graphic representation of
the bad genes crossover.

Parents:
CR TS CR TS CR TS CR TS CR TS CR TS

11 10 15 24 10 15 101 11 49 11 33 58

CR TS CR TS CR TS CR TS CR TS CR TS

11 10 15 12 10 13 101 11 13 11 13 58

Children:
CR TS CR TS CR TS CR TS CR TS CR TS

11 10 15 12 10 13 101 11 49 11 33 58

z
CR TS CR TS CR TS CR TS CR TS CR TS

11 10 15 24 10 15 101 11 13 11 13 58

Figure 3 – Bad genes crossover. White alleles refer to
bad genes.

2.6.1.2 Bad Gene Mutation
This mutation randomly changes one bad gene of a
selected chromosome.

3 Results

3.1 Performance

To test the efficiency of the bad gene operator we
used the information of the 96/97 timetables from a
large high school called DFL. In Table 2 we can
see the characteristics of this school.

Classes 41
Teachers 109
Class-rooms 37
Time slot duration 60 min.
Time slots to be assigned 1311
Number of lessons 472
Rate time slots/teachers 12
Rate time slots /classrooms 69%

Table 2. – Data from the DFL school.

The weights used in the cost function are shown in
Table 3. These values lead the algorithm to
eliminate the violations of hard constraints first and
then to minimise the violations of the soft
constraints.

Table 3 .– Weights used in the cost function.

3.2 Improvements

In figure 4 we can see the improvement in the
E.A. performance caused by the introduction of
the bad genes operators. For each configuration,
the E.A. was run 15 times for 35000 chromosome
evaluations. The results shown in fig. 4 refer to the
evolution of the mean values of the cost of the best
chromosome. Configuration A refers to an E.A.
with the typical monopoint, multipoint and uniform
crossover and mutation. Configuration B adds a
previous version of the bad gene mutation
discussed in [7] to these operators. In this version
the mutation is confined to the genes that give rise
to the violation of a hard constraint that cannot be
repaired. Configuration C is the configuration
discussed above with the new bad gene operators
with a wider region of infection. In this
configuration the bad gene crossover replaced the
uniform crossover operator.

The tests were made under the following
conditions:

§ Population dimension: 40
§ Elitism: 5 pass to next generation
§ Starting values for the operators’ probability:

0.225 for each crossover and one gene
mutation per chromosome at a rate of 0.1.

Constraint Weight
Superimposed lessons/teacher 1.0
Superimposed lessons/ Class 1.0
Superimposed lessons/ classrooms 0.25
Gaps in class timetables 0.008
Gaps in teacher timetables 0.002
Maximum number of lessons per day
– class

0.02

Maximum number of consecutive
lessons per day – class

0.02

Maximum number of lessons per day
– teacher

0.02

Maximum number of consecutive
lessons per day – teacher

0.02

Lessons of same subject and type
on same day

0.25

Lunch Hour 0.02

Bad genes in white

0

10

20

30

40

50

60

70

80

90

100

Nº of Evaluations

A

B

C

Figure 4 – Evolution of the algorithm with the following
configurations:

A – E.A. with Mono-point, multi-point and
uniform crossover and mutation.

B – E.A. with previous version of bad gene
mutation

C – E.A. with new bad gene operators.

In configurations B and C we increase the
convergence speed of the E.A. by making 5 copies
of the best chromosomes and applying the bad
gene mutation to them. These 5 chromosomes,
together with the best 5 of the previous generation
(elitism) and the 30 additional chromosomes
created by crossover and mutation operators
constitute each new generation.

4 Conclusions

The E.A. solves the problem presented satisfying
all hard constraints and with very few soft
constraint violations. We plan to obtain data from
other schools to more thoroughly test the bad gene
operators and good results are expected.
We also tested a bad gene crossover with different
crossover probabilities for bad genes. In this
crossover, the bad genes that actually give rise to
the violation of a hard constraint are always
swapped and the others are swapped with a 50%
probability. This crossover operator has a
performance similar to that of configuration B.
The new bad-gene operators result in a faster
convergence of the algorithm but are only good for
eliminating violations of hard constraints. When
none of the hard constraints are violated the
operators are useless. We are currently working on

new operators that will be especially effective in
this case.

References

[1] P. Adamidis , P. Arapakis, Weekly Lecture
Timetabling with Genetic Algorithms . PATAT 97,
1997, pp 278-280.

[2] J. Allen Lima, J., N. Gracias, H. Pereira, A. C. Rosa,
Fitness Function Design for Genetic Algorithms
in Cost Evaluation Based Problems , Proc. IEEE -
Int. Conf. Evolutionary Computation, ICEC’96,
1996, pp 207-212.

[3] J.P. Caldeira, A. C. Rosa, School Timetabling
using Genetic Search. PATAT 97, 1997, pp 115-
122.

[4] T. B. Cooper, J.K. Kingston, The Complexity of
Timetable Construction Problems , Practice and
Theory of Automated Timetabling, Selected
Papers, Springer-Verlag, 1995.

[5] L. Davis, Handbook of Genetic Algorithms. Van
Nostrand Reinhold, New York, 1991.

[6] W. Erben, J. Keppler, A Genetic Algorithm
Solving a Weekly Course-Timetabling Problem.
Practice and Theory of Automated Timetabling,
Selected Papers, Springer-Verlag, 1995.

[7] C. Fernandes, J. P. Caldeira, F. Melicio, A. C.
Rosa, High School Weekly Timetabling by
Evolutionary Algorithms , SAC99, 1999.

[8] D.E. Goldberg, Genetic Algorithms in search,
optimization and machine Learning, Addison-
Wesley, 1989.

[9] M. Kim, T. Chung, Development of automatic
Class Timetable for University. PATAT 97, 1997,
pp 182-186,.

[10] F. Melicio, J. P. Caldeira, A. C. Rosa, Timetabling
implementation aspects by Simulated Annealing.
IEEE-ICSSSE'98, Beijing, 1998.

[11] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs. Springer-
Verlag, 1994.

[12] D. C. Rich, A Smart Genetic Algorithm for
University Timetabling. Practice and Theory of
Automated Timetabling, Selected Papers,
Springer-Verlag, 1995

[13] M. Stuber, Real World Timetabling: A Pragmatic
View. PATAT 97, 1997, pp 258-267.

[14] R. Tavares, A. Teófilo, P. Silva, A. C. Rosa,
Infected Genes Evolutionary Algorithm. SAC99,
1999.

