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Abstract: This paper presents a new paradigm on 2-D visual structures representation. It consists 
on a model, which has the property of storing object internal relations independently to their 
location or orientation, as well as storing content-addressable information about visual images 
under observation. The model is implemented as a Neural Network, which learns both its units’ 
number and its units’ weights in an unsupervised manner. Application example is provided for 
illustration of the concept. 
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1. Introduction 
 

Related work 
Several authors have lately used cortical 

models to achieve visual recognition. Rajesh Rao 
and Dana Ballard use a recognition model that 
uses the typical retroaction properties of 
Neuronal Networks [9]. That model uses an 
extend Kalman Filter [1,10] based on the 
Minimum Description Length [11], to obtain a 
hierarchical network model in order to achieve 
visual recognition. 

 
This model is based on Visual Cortex 

neurophysiological data. Image under 
observation is divided into partially overlapping 
Receptive Fields. Information is processed in 
several layers. Several modules compose each 
layer. Sets of modules are combined and 
processed together in some module of the next 
layer. Superior layers supply predictions to the 
lower ones, and the prediction error enables 
learning. 

 
Although this model is able to store structural 

relations and even to reconstruct partially 
occluded objects, it is not invariant to objects 
location, orientation or scale; the objects must be 
placed in exactly the same position and 
orientation as they were learned, in order to 
attempt recognition.  

 

Furthermore, this network associates the image 
under observation to a pre-memorised object, not 
showing ability to learn structural rules that could 
enable predictions even on objects never seen 
before. 

 
Biological inspiration of this work 
Some cells in Infero-Temporal area have been 

found to detect particular shapes, colours or 
textures. These features are usually common to 
several different objects, thus constituting a 
building block of these objects [12,2]. An object 
will be recognised when a particular combination 
of those building blocks is detected. Other studies 
suggest that lateral connections among Visual 
Cortex cells will generate functionally coherent cell 
combinations [7]. 

There is also evidence that Infero-Temporal 
Cortex cells that have their Receptive Fields 
capturing parts of the same object will synchronise. 

 
Features Network 
In our approach we suggest this synchronisation 

ability may be due to some internal mechanism of 
structural coherence detection. 

We worked with sequences of real images, with 
no previous learning. The basic structure of our 
learning model is a Neural Network, with the 
objectives of firstly to learn and recognise features 
of the observing data (Interpretation Layer), and 
secondly to learn and recognise structural 
coherences among those features (Coherence 
Layer). The neurones required for both learning 
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processes are created, as they are needed. The 
number of neurons belonging to the Network 
emerges from the unsupervised learning 
mechanism. 

 
2. The Representation Model 
The Representation model was organised in a 

Neural Network with two layers. 
 
The Interpretation Layer 
The first layer learns typical visual features of 

the world, and is designated by Interpretation 
Layer. It starts with no knowledge, containing no 
neuron. Its objective is to make feature extraction 
of the observing data, as well as capturing the 
orientation of extracted features. This layer 
evolves both in the number of neurons it contains 
(extractable features) and in the weights 
associated to each neuron, gaining the ability to 
recognise the relevant features that may exist 
within any real image. The weights associated to 
each neuron describe the visual pattern that the 
neuron is able to recognise. 

The input of the Interpretation Layer is the 
image observed, which may for example be a 
frame from a video sequence. That image is 
captured in small circular overlapping units, the 
Receptive Fields. When observing the image, 
each Receptive Field will thus contain a small 
part of the observed image, which will be called 
in the next text as Receptive Field Observation or 
just Observation for short. 

We define an Interpretation as a pair (Index, 
Orientation). Index represents the index of the 
Interpretation Layer neuron that best matches the 
Observation, regardless of the orientation of the 
latter. Orientation represents the orientation of 
the Observation towards the orientation of the 
neuron inner representation of the feature, which 
is considered the origin (0º) for determining the 
Observation orientation. 

To achieve both unsupervised neurons 
formation and unsupervised weights learning, the 
Interpretation Layer uses a simple method 
described below: 

Define W as the Feature Base. W is a matrix 
composed by c vectors, such that c is the number 
of neurons in the Interpretation Layer. Each of 
those vectors represents a particular feature, and 
is equivalent to the respective neuron weights. 
We start with c=0. 
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Note that this space ζ is not constant as the 
Interpretation Layer evolves, by observing new 
images. In fact this space starts empty, because 
the initial number of Interpretation Layer neurons 
(designated before as c) is zero. 

 
 
 
 
 
 
 
 
 
 

Figure 2. Interpretation Layer transforms an image to 
a set of Interpretations. For that purpose, the image is 
divided to a set of s (constant) Receptive Fields (the 
circular overlapping units shown in the figure). Each 
Interpretation is a pair (Index, Orientation. “Index” is 
the index of the neuron that recognised the 
observation inside the respective Receptive Field. 
“Orientation” is the index of the rotation that 
provided the neuron. ζ is the space of all possible 
Interpretations. 

 
The unsupervised creation of the Interpretation 

Layer neurons is based on the analysis of how 
well the Layer is able to recognise the observed 
data. If the neuron that best recognises a feature 
does not have high correlation with it, then the 
Interpretation Layer creates a new neuron, 
specialised on that feature. The Neuron Output 
measures correlation, which is the greatest inner 
product between a feature (from its W36 
expansion instances) and the Observation. The 
threshold for creation of a new neuron has been 

set to 
2
2

. By increasing this threshold, we 

loose generalisation power, and increase sharply 
the number of overall neurons. We obtained this 
result by simulating the Network generation on a 
high number of Receptive Field presentations 
(10000) and then measuring the number of 
neurons generated. We made this simulation for 
several threshold values. Results shown that 

threshold 
2
2

is the critical value in the relation 

neurons number created versus threshold (the 
criteria was greatest second derivate).  

 
If the correlation is greater than the threshold, 

then we have successful extraction of some 
feature, and we update the weights of the 

extracting neuron through a process similar to k-
means clustering algorithm [9]: 
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Where I is the Observation, i is the index of the 
extracting neuron, and η is some learning. 

 
 
The Coherence Layer 
The Coherence Layer learns and estimates 

structural relations within objects, using the 
Features generated in the Interpretation Layer. 

After transforming the observed image in a set of 
Interpretations, the model starts analysing every 
image’s Receptive Field, taking each one as 
Reference one at a time. 

The model then processes one Reference by 
gathering information about the v nearest Receptive 
Field Interpretations around it (its neighbourhood).  

 
This neighbourhood is used to set up input vector 

z that feeds Coherence Layer neurons. This input 
vector constitutes a description of Reference 
neighbourhood, and has m ζ#×= v elements. We 
may see it as a flattening of a matrix with v rows 
and #ζ columns. Each possible relative position of 
one neighbour, towards the Reference, indexes one 
row of z. Each possible interpretation corresponds 
to a column. At each row, that represents a 
neighbour position, one and only one element have 
value α≠0, corresponding to the Interpretation 
recognised in that relative position. 

 
z is therefore a binary sparse vector, with values 

either 0 or αααα. Each element is associated with a 
particular relative position p (in polar coordinates, 
with coordinates origin in the Reference Receptive 
Field) and at a particular interpretation y∈ζ. This 
element has value α - we say it is active - if y is 
observed on relative position p; otherwise it has 
value 0.  

We choose α such that z is normalised; as only v 
(number of chosen neighbours) elements of z are 

active, then we choose α = 
v

1
. 

 
Learning Mechanism 
Coherence Layer uses Reference Interpretation 

and the neighbour Interpretations (the latter given 
by vector z) to learn structural inter-positioning 
relations among features – Figure 3. 
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Recall that an Interpretation is pair (Feature, 
Orientation). Designate Reference Orientation 
by k´. Neighbourhood is rotated such that 
Reference becomes angular origin. Name this 
transformed neighbourhood vector z´. 

Define ψψψψ the Coherence Layer weights matrix. 
Notice that, by rotating neighbourhood z to z´, 
Coherence Layer becomes orientation invariant. 
Also notice that weights ψψψψ in the Coherence 
Layer do not need to contain data relative to the 
Reference Orientation. Therefore, those weights 
just refer to the Reference Feature (c rows), and 
to each element of the input (m columns). ψψψψ is 
updated using Hebb rule [3]. 

´´ wkiwi dz ⋅⋅=∆ ηψ , (2)   (3) 
where ηηηη is the learning rate, and d (known 

desired vector) represents the output of the 
Interpretation Layer when the Reference 
Receptive Field actuates it. The elements of this 
vector represent all possible interpretations. It is 
a vector with all zeros, except in the desired 
interpretation dw´k´, in which it has value one (w´ 
designate the desired Reference Feature). 

 
 
 
 
 
 
 
 
 
 

Figure 3. Receiving description vector z and the 
desired Interpretation for the Reference (by capturing 
its output from the Interpretation Layer), Coherence 
Layer reinforces the inter-positioning relations 
between the Reference and its neighbours (those 
relations are described in the Coherence Layer 
weights). 

 
Estimation 
The objective of the Coherence Layer is to 

identify areas of an image that are Coherent with 
each other, and thus may belong to the same 
object. We identify this coherency, when some 
Reference Neighbourhood allows Coherence 
Layer to estimate Reference interpretation 
correctly. 

If Coherent Layer is not able to estimate 
correctly the Reference from the neighbourhood, 
then either the neighbourhood falls in a boundary 
among several objects, or it falls in one object 
that has not been previously observed by the 
model. 

On the other hand, if the neighbourhood has been 
observed before in a coherent manner (that is, 
conserving structural inter-positioning relations), 
then Coherent Layer may successfully estimate the 
Reference Receptive Field.  

 
We designate Coherence Layer Estimator a 

processing unit that uses Coherence Layer in order 
to make estimation.  

Its input is Reference Neighbourhood, given by 
vector z – Figure 4. 
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in these relations, indifferently to the absolute 
locations or absolute orientations where they 
were observed. 

 
3. Features Network Properties 
The model described is a representation 

structure that stores information both about 
existing features (Interpretation Layer) and 
about typical position relations among them 
(Coherence Layer). 

We claim that the Coherence Layer, 
assembled as described in previous chapter, has 
the property of representing its information in a 
content-addressable way (the proof for this 
claim will be provided in further publications). 
That property, in conjunction with the 
Orientation Invariance referred in Interpretation 
Layer section, allows Features Network to have 
the following overall properties: 

• Information stored is location and 
orientation independent; 

• Topological information is content-
addressable: given a piece of information about 
some object details, the network will raise 
expectations for the contiguous object details; 

• Object recognition is performable: it is 
based on measuring the coherence between 
observation and expectation in particular image 
areas; 

• Information about object boundaries is 
retrievable: when expectation level of 
uncertainty is higher than some threshold, the 
Network may expect a boundary. 

 
These properties enable the establishment of 

criteria in order to decide which features from 
the Interpretation Layer are more relevant; for 
example, we may associate feature relevance to 
statistical variance of the weights in the 
Coherence Layer (the greater the variance, the 
greater the relevance of the feature to the 
estimation process). 

 
4. Results 
We have applied Features Network to a 

higher-level analysis system, capable of 
assembling areas where Features Network’s 
expectation corresponded to observation, as well 
as determining areas where Features Network 
raised high levels of uncertainty (typically 
boundaries). To analyse the behaviour of the 
overall system, we presented a sequence of only 
two images. Both images contain the same real 
objects, but they are presented in different 
locations. The images are 128x128 pixels, and 

the Receptive Fields have 20 pixels diameter. We 
chosen two medially featured objects, an ox skull 
and a shell. The ox skull was purposely modified, 
such that it became fragmentary. The system had 
no previous information about how many objects 
were within the images, and also had no other 
knowledge about the kind of visual information it 
was supposed to receive, or about what correlation 
it was expected to find between the two images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. a. Learned images, in sequence. b. Test 

image. c. Objects segmentation in the test image, due to 
levels of uncertainty detection. d. Extrapolation of 
objects based on Features Network information. 

 
Results expected 
Given those images, the Features Network was 

expected to learn the relevant Features (in its 
Interpretation Layer) as well as to use those 
features to raise some learning about topological 
coherences it could find in the Coherence Layer. 

As the objects were presented in different 
locations, we expected that topological coherences 
found between both objects in the first picture 
would disappear or be substantially diminished in 
the second picture, as they would be found to be 
inconsistent with that image. We also expected 
that the Features Network would represent the 
fragmentary object as a whole, as its inner 
coherences were not broken. Besides, all 
topological coherence recognition should be 
robust to objects rotation (as well as location). 

a 

b 

c 

d 



Testing method 
In order to test whether the Representation 

structure constructed in the Coherence Layer is 
location and orientation independent or not, i.e. 
to test if it would succeed to recognise both 
objects, we presented a third image, where the 
same two objects were rotated and located 
independently (Figure 5.b). To further test the 
representation consistency, we inconsistently 
rotated one part (the horn) of the fragmentary 
object. 

In Figure 5.c we show maps of image 
topological coherences found in Figure 5.b, 
given the knowledge learned in figure 5.a. To 
build those maps, we gathered regions where 
Receptive Fields were coherent with their 
neighbourhoods. We also found Receptive 
Fields with high probability to correspond to 
boundaries (as commented in the Coherence 
Layer Estimation Section, those Receptive 
Fields should not be coherent with their 
neighbourhood). From the coherency regions 
and boundaries, we generated a set of “islands”, 
with high probability of corresponding to 
independent objects. Each map corresponds 
showing the Observations found at every 
Receptive Field of a particular “island”. 

The maps tell us that the analysis system 
found three regions of high topological 
coherence among their inner features. Those 
results would be obviously expected due to the 
inconsistency deliberately introduced in the 
fragmentary object in Figure 5.b. 

To show that the Features Network is indeed a 
Representation structure, we used the knowledge 
of the Coherence Layer to expand the maps in 
Figure 5.c. The result in Figure 5.d, shows 
clearly that the Features Network is a 
Representation Structure independent of location 
or orientation, and also that the fragmentary 
object was represented as a whole. 

 
5. Discussion 
 
The results we obtained, show that this model 

achieves the purposes it was designed for, 
namely the properties referenced in Section 3. 
As discussed in the last paragraph of that 
Section, these properties open doors to a self-
controlling mechanism that prevents the 
indefinite grow of the number of neurones in the 
Interpretation Layer. 

In further experiments, we found that the 
model also shows tolerance to scale (until about 
30% for amplifications and 20% for reductions) 

and also to some degree of geometrical distortions. 
Using this scale tolerance, we may achieve further 
scale robustness simply by considering different 
scales. Images within Receptive Fields may be 
compared to features at all possible scales, and not 
only we detect the feature but also in which scale 
it is being presented. 
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