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Abstract: Studies of constrained optimization problems are usually focused on the development of new evolutionary 
algorithms or operators.  This paper does not propose anything new apart from a more effective use of the already 
existing operator.  It is focused on the crossover operator.  Starting from the standard form – the linear combination, we 
study the effects of multiple crossover of the same pair of parents, and then multiple crossover of a parent with all other 
individuals from the population.  Such an approach, although very costly from the point of view of the number of 
function evaluations, is effective, which is proved by the results of eleven test cases from the literature. 
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1   Introduction 
The general nonlinear parameter optimization problem is 
defined as: 

optimize: n
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where f , gi and hj are real-valued functions on the search 
space S. The satisfaction of the set of constraints (gi, hj) 
defines the feasible region F. 
There have been many efforts to use evolutionary 
algorithms for constrained numerical optimization 
[11][6]. They can be grouped into five basic categories: 
• Methods based on preserving the feasibility of 

solutions. 
• Methods based on penalty functions. 
• Methods based on a search for feasible solutions 
• Methods based on decoders. 
• Other hybrid methods. 
 
The method shown in this paper may be regarded as 
belonging to the third of the aforementioned categories.  
In this category evolutionary methods emphasize a 
distinction between feasible and infeasible solutions: 
• Behavioral memory method [14] – considers the 

problem constrains in sequence, once a sufficient 
number of feasible solutions is found in the presence 
of one constraint, the next constraint is considered; 

• Method of superiority of feasible points [12] – 
assumes that any feasible solution is better than any 
infeasible solution; 

• Genocop III [9] – repairs infeasible individuals. 

 
The paper is organized as follows.  Section 2 presents 
the proposed method.  Section 3 describes the first test 
performed on the set of 11 test cases from the literature.  
Section 4 adds an additional mechanism to the proposed 
method and analyses its effects in the second test.  
Section 5 concludes the paper. 
 
 

2   A description of the method 
The proposed method is based on greatly simplified 
analogy with the world of plants, where one can hardly 
speak of selection of parents for reproduction and 
crossing-over occurs on a mass scale, on an everyone 
with everyone basis, e.g. a tree has no influence on the 
selection of partners and has to generate offspring on a 
mass scale with every tree of the same kind that grows 
within its range. The mass character and certain 
egalitarianism of reproduction is the key to success.  
The fact that crossover of parents takes place only once 
and, as a result, the chances for accumulation of the 
valuable genetic material of individual parents in one 
offspring are very small, is a common characteristic of 
evolutionary algorithms, regardless of the type of 
problem that is optimized. Therefore, despite the 
potential of parents or, in a wider sense, of the whole 
current population, frequently the maximum possible 
progress in searching is not achieved, because the full 
crossover potential is not utilized due to complete 
reliance on randomness of crossover operator.  
Consequently the proposed method, which is referred to 
as multiple-crossover algorithm (denoted here as M-CA) 
is based on following five assumptions. 



• Multiple (instead of single) crossover of the same pair 
of parents may lead to better utilization of the 
potential of the parents and, in a wider sense, in the 
whole population.  The idea of multiple crossover is 
not new (see [3]), but its efficiency has not been tested 
yet in the context of the problems considered here. 

• Secondly, the proposed method assumes that any 
feasible solution is better than any infeasible solution.  
This assumption is modeled on the paper by Powell 
and Skolnick [12]. That paper used a method based on 
a classic penalty approach, but with one notable 
exception. Each individual is evaluated by the 
formula: 
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• where r is a constant, the original component θ(t,x) is 

an additional iteration- dependent function that 
influences the evaluations of infeasible solutions.   
The point is that the method distinguishes between 
feasible and infeasible individuals by adopting an 
additional heuristic.  For any feasible individual x and 
any infeasible individual y: evaluation(x) < 
evaluation(y)1, i.e. any feasible solution is better than 
any infeasible one.  This can be achieved in many 
ways.  Powell and Skolnick achieved this by mapping 
evaluations of feasible solutions into interval   (-∞,1) 
and infeasible solutions into interval (1,∞). In the 
method described in this paper the selection operator 
is not used (which is described below), so the only 
thing needed here is a method of comparing 
individuals in order to find the best individual in the 
population.  It is necessary to select the best 
individual, because in accordance with the principles 
of the elitist strategy applied here it will automatically 
become a member of the offspring population.  
Individuals are compared by the following method: 
If we compare two individuals, the one with a smaller 
deviation from the constraints is better.  If the 
deviation is the same for both individuals, the one 
with lower (higher for maximum problems) evaluation 
function value is better.  In the case of test function 
analyzed here, the quotient of the total of absolute 
distances from the respective constraints and the 
number of constraints is the measure of deviation 
from constraints. 

• The effectiveness of multiple crossover should be 
independent on the number of individuals in the 
population 

                                                           
1 Assuming the problem considered here is a 

minimum problem, otherwise: 
evaluation(x)>evaluation(y) 

• Parent selection operator can be replaced by mass 
reproduction. 

• The idea of mass reproduction should the answer to 
the problem of constraints satisfaction 

On the basis of the assumptions discussed above, a 
method presented in Figure 1 was developed.  First, 
population P(0) is initialized. In accordance with the 
third assumption the number of individuals (denoted as 
N) in the population is small (here N = 10).  Then that 
population is evaluated (as described in the second 
assumption) and the best individual is determined.  The 
rest of the method is described in the form of a loop, 
which ends when the previously prescribed number of 
iterations has been performed.   
The main loop of the method starts with placing the best 
individual from P(t-1) in the offspring population P(t).  
Then the remaining N-1 offspring are generated in the 
following way: a parent X∈P(t-1) is selected by pure 
random selection, each of X∈P(t-1) may be selected only 
once; an evolutionary operator is selected at random and 
then an offspring is generated with the use of the 
randomly selected operator.  A selected parent is the 
argument of the operator (Fig.2 r.1; Fig.3 r.1), for 
multiple crossover operator the other parent (different 
than X) is selected at random in the body of the operator 
(Fig.2 r.3).  The loop ends with the evaluation of the 
newly generated population. 
A selection operation in the classic sense is not used here 
– it is a consequence of fourth assumption. Moreover, it 
can be seen that as a result of the application of the elitist 
strategy one individual from P(t-1) will not be selected 
for further processing – that individual may die.   
Random selection of an evolutionary operator depends 
on the probability of mutation.  The value of this 
parameter is relatively high (see description of the 
experiments) in order to ensure the maximum intensity 
of exploration of search space, which is meant to 
supplement the intensive utilization of potential of the 
current population, realized using multiple-crossover 
operator.   
 
Figure 1. Multiple-crossover algorithm 
1.  Procedure M-CA 
2.  set starting generation number t=0 
3.  randomly initialize population P(t) 
4.  evaluate P(t) 
5.  while (not termination-condition) do 
6.  t=t+1 
7.  insert best individual from P(t-1) to P(t) 
8.   while (P(t) is not full) do 
9.   select parent X∈P(t-1) which was not selected 
    before in this loop 
10.  set β = random (real) number form <0,1> 
11.   if β ≤ probability of mutation then 



12.   S = mutation operator 
13.   else 
14.   S = multiple crossover operator 
15.   end if 
16.  generate offspring XI ∈ P(t) from parent X ∈ P(t-1)  
    by operator S 
17.  end while 
18. evaluate P(t) 
19. end while 
20. end procedure 
 
The crossover and mutation operators used here are 
modelled on the most frequently used operators for the 
analysed class of problems.  The multiple crossover 
operator (Figure 2) is modelled on the arithmetic-
crossover operator [7] and the difference, resulting from 
the first assumption, is the multiple crossover of the 
same pair of parents and then the selection of one 
(instead of a pair) best offspring from among all the 
generated offspring.  
Depending on the test number, mutation is performed 
with the use of one or both of the following operators: 
the first one, MUT1, involves a simple replacement of a 
parent with a completely new randomly generated 
individual; the second one, MUT2 (see Figure 3), is 
based on non-uniform mutation [7], with the reservation 
that in MUT2 each gene from solution vector has a 
chance for mutation (Fig.3 r.2) with probability equal to 
0.5 
 
 
Figure  2. Multiple crossover operator (version 1) 
1.  Procedure Multiple-crossover-1 (X ∈ P(t-1)) 
2.  BEST = X 
3.  select by random parent Y∈P(t-1) different than X 
4.  for k-times generate offspring V 
5.  set α = random (real) number form <0,1> 
6.  V = αX + (1 - α)Y 
7.   if V is better that BEST then 
8.   BEST = V 
9.   end if 
10. end for 
11. return(BEST) 
12. end procedure 
 
Figure 3. Mutation operator MUT2. Where: ∆(t,y)=yr(1-
t/T)b ; r – random (real) number from <0,1>; t – current 
generation number; T – maximal generation number; b – 
parameter determining the degree of non-uniformity 
(here b is set to 6 in  order to achieve fine local tuning in 
the final phase of the algorithm run); left(i) and right(i) 
indicate the bottom and top limit of the domain of i-th 
component. 
1.  Procedure MUT2 (X ∈ P(t-1)) 

2.  for every i-th component of vector X 
3.  set α = random (real) number from <0,1> 
4.   if α < 0.5 then 
5.   set β = random (real) number from <0,1> 
6.    if β < 0.5 then 
7.    vi=xi+∆(t,right(i)-xi) 
8.    else 
9.    vi=xi-∆(t,xi-left(i)) 
10.   end if 
11.  else 
12.  vi=xi 

13.  end if 
14. end for 
15. return(V) 
16. end procedure 
 
 

2   The first test 
The known set of eleven test functions referred to as G1-
G11 was used to test M-CA; the first five functions were 
published in [5] and the current content of G1-G11 set 
was published in [11].  Table 1 summarises the best 
results for the G1-G11 set published to date.  It groups 
the results of a number of methods, because so far none 
of them has given equally good results for all test 
functions when used on its own.  As we can see, the 
optimum results have been found for only 7 out of the 11 
test functions.  Moreover, the obtained results are stable 
(i.e. the same in all runs) for 5 functions only.  This last 
feature is of course characteristic of evolutionary 
methods, but the difference between the worst and the 
best result is often too big (especially for the function 
G10). 
 
Table 1. Summary of the results obtained so far by the 
best of the published evolutionary algorithms. The first 
column shows problem Ids.  The second column shows 
the global solution, if known, if not – it shows in 
parentheses the best solution obtained so far.  The third, 
fourth and fifth columns show the best, average and 
worst solutions obtained by specific EA (GEN stands for 
Genocop [8], S.O. for Strategic Oscillation [10], H.M. 
form Homomorphous Mappings [4], D.P. for Dynamic 
Penalty [2], S.R. for Stochastic Ranking [13], A.A. for 
Adaptive Algorithm [1]). 

Problem 
ID 

Global 
solution 

Best Average Worst Specific 
method 

G1 
(min) 

-15 -15 -15 -15 GenocopII 
& S.R. 

G2 
(max) 

Unknown 
(0.803619) 

0.803553 n.a. 0.802964 S.O. 

G3 
(max) 

1.0 1 0.999844 n.a. A.A. 

G4 
(min) 

-30665,5 -30665.5 -30655.5 -30655.5 S.R. 

G5 Unknown 4707.52 n.a. n.a. D.P. 



(min) (4221.956) 
G6 
(min) 

-6961.81 -6961.81 -6961.81 -6961.81 A.A. 

G7 
(min) 

24.3062 24.307 24.37 24.642 S.R. 

G8 
(min) 

Unknown 
(0.095825) 

0.095825 0.095825 0.095825 A.A. & 
S.R. 

G9 
(min) 

680.63 680.63 680.648 n.a. A.A. 

G10 
(min) 

7049.33 7054.316 7559.192 8835.655 S.R. 

G11 
(min) 

0.75 0.75 0.75 0.75 H.M. & 
A.A. & 

S.R. 

 
The first test has been divided into two stages - Test 1-A 
and Test 1-B.  During each stage, 20 runs of the M-CA 
algorithm were performed for each of the G1-G11 
functions.  In each run, the number of iterations was 
equal to 20000, the number of repetitions k = 50 (see 
Fig2. r.4), probability of mutation = 0.2.  In Test 1-A 
both mutation operators – MUT1 i MUT2 were used.  
Each time, one of them was selected by random 
selection with equal probability.  In Test 1-B only the 
MUT1 operator was used. 
Systems defining constraints for the functions G3, G5 
and G11 contain equations.  In such cases, it is an 
accepted practice either to eliminate them [8] or 
transform into inequalities [1].  In all tests performed 
here the equations of functions G3 and G11 were 
transformed into inequalities (with the accuracy  
ε = 0.0001) and the equations of function G5 were 
eliminated – their transformation into inequalities 
brought poor results. 
Tables 2 and 3 present the results of the performed tests.  
As shown, the obtained results are equal to the global 
solution for 8 functions in Test 1-A and 7 functions in 
Test 1-B.  Furthermore, 6 results in Test 1-A and 7 in 
Test 1-B were completely stable – identical in all test 
runs.  
It should be noted, however, that the basic disadvantage 
of the M-CA method is its cost measured in terms of the 
number of evaluations of the tested functions.  The 
estimated number of such evaluations is 8*50 = 400 
evaluations in each run, which considerably exceeds the 
number of function evaluations in other evolutionary 
algorithms for G1-G11 published.  
 
Table 2. Results obtained by M-CA in Test 1-A 

Problem 
ID 

Global 
solution 

Best Average Worst 

G1 (min) -15 -15 -15 -15 
G2 (max) unknown 

(0.803619) 
0.803619 0.796229 0.768789 

G3 (max) 1.0 1.0 1.0 1.0 
G4 (min) -30665,5 -30665.5 -30665.3 -30664.5 
G5 (min) unknown 4342.451 4636.73 4931.009 

(4221.956) 
G6 (min) -6961.81 -6961.81 -6961.81 -6961.81 
G7 (min) 24.3062 24.8324 26.0106 27.3438 
G8 (min) unknown 

(0.095825) 
0.095825 0.095825 0.095825 

G9 (min) 680.63 680.63 680.63 680.63 
G10 (min) 7049.33 7065.24 7181.425 7307.19 
G11 (min) 0.75 0.75 0.75 0.75 

 
Table 3. Results obtained by M-CA in Test 1-B 
Problem 

ID 
Global 
solution 

Best Average Worst 

G1 
(min) 

-15 -15 -15 -15 

G2 
(max) 

Unknown 
(0.803619) 

0.798181 0.793198 0.785724 

G3 
(max) 

1.0 1.0 1.0 1.0 

G4 
(min) 

-30665,5 -30665.5 -30665.5 -30665.5 

G5 
(min) 

unknown 
(4221.956) 

4397.345 4399.395 4401.445 

G6 
(min) 

-6961.81 -6961.81 -6961.81 -6961.81 

G7 
(min) 

24.3062 24.3472 24.6717 24.8842 

G8 
(min) 

unknown 
(0.095825) 

0.095825 0.095825 0.095825 

G9 
(min) 

680.63 680.63 680.63 680.63 

G10 
(min) 

7049.33 7200.79 7310.85 7481.91 

G11 
(min) 

0.75 0.75 0.75 0.75 

 
 

3   The second test 
The quality of the results obtained in the first test 
encouraged development of the M-CA method.  In the 
second test, the following changes were introduced to 
the M-CA: 
• The parent randomly selected for crossover is still 

crossed over (Figure 4) many times (k = 50), but this 
time with all other individuals from the current 
population in turn (Fig.4 r.3). 

• The crossover process itself was also changed, this 
time (Fig.4 rows 7-12) the linear combination is 
realised for the randomly selected components of 
solution vector, while other components remain 
unchanged. 

• The mutation operator probability was increased to 
x/2, where x is random (real) number from <0,1>. 

• 40 M-CA test runs were performed, 20 with mutation 
realised with the use of MUT1 operator and 20 with 
MUT2. 



The remaining M-CA parameters remained the same as 
in Test 1. 
 
Figure 4. Multiple crossover operator (version 2) 
1 Procedure Multiple-crossover-2 (X ∈ P(t-1)) 
2 BEST = X 
3 for every Y∈P(t-1) different than X 
4  for k-times generate offspring V 
5   for every (i-th) component 
6   set β = random (real) number from <0,1> 
7    if β < 0.5 then 
8    set α = random (real) number from <0,1> 
9    vi = αxi + (1 - α)yi 

10   else 
11   vi = xi 

12   end if 
13   end repeat 
14   if V is better that BEST then 
15   BEST = V 
16   end if 
17  end for 
18 end for 
19 return(BEST) 
20 end procedure 
 
The results of Test 2 are presented in Table 4.  For the 
G7 function the presented results were obtained in 20 
runs with the use of MUT2; for the function G10 the 
presented results were obtained in 20 runs with the use 
of MUT1.  For the remaining functions, the results of 
runs with the use of MUT1 and MUT2 were identical.  
For functions G1-G6, G8, G9, G11 the obtained results 
are equal to or better than the results obtained with the 
use of other revolutionary methods.  Moreover, they are 
stable – identical in all runs of the algorithm.  For 
function G7 the best result is worse than the one 
published in [13], but the difference between the worst 
and the best result is smaller and the average result is 
better.  However, it should be stressed again that the cost 
of M-CA measured in terms of the number of function 
evaluations is very high – in Test 2 it reaches the level of 
≅ 5*9*50=1500 function evaluations in each iteration.  
For function G10 the obtained result, although better 
than the results published to date, did not come close to 
the global solution value and, moreover, the observed 
difference between the worst and the best solution is too 
big.  For this reason, Test 2 was repeated for G10 with 
an increased number of individuals in the population and 
the parameter k defining number of repetitions. 
Test 2 was repeated for G10 with the following 
parameters: 
• The number of individuals in the population = 250 
• k = 250 
• The number of iterations = 250 

• The number of runs = 20 
• Mutation crossover probability = x/5, where x is 

random (real) number from <0,1>. 
 
Table 4. Results obtained by M-CA in Test 2 
Problem 
ID 

Global 
solution 

Best Average Worst 

G1 
(min) 

-15 -15 -15 -15 

G2 
(max) 

unknown 
(0.803619) 

0.803619 0.803619 0.803619 

G3 
(max) 

1.0 1.0 1.0 1.0 

G4 
(min) 

-30665,5 -30665.5 -30665.5 -30665.5 

G5 
(min) 

unknown 
(4221.956) 

4221.956 4221.956 4221.956 

G6 
(min) 

-6961.81 -6961.81 -6961.81 -6961.81 

G7 
(min) 

24.3062 24.323 24.356 24.399 

G8 
(min) 

unknown 
(0.095825) 

0.095825 0.095825 0.095825 

G9 
(min) 

680.63 680.63 680.63 680.63 

G10 
(min) 

7049.33 7052.24 7087.55 7133.95 

G11 
(min) 

0.75 0.75 0.75 0.75 

 
Table 5 presents the results of the repeated Test 2 for 
G10.  As shown, this time M-CA gave a result equal to 
global solution.  Moreover, the difference between the 
worst and the best result is small. 
 
Table 5. Results obtained by M-CA repeated for G10 
with: k = 250, number of individuals = 250, number of 
iterations = 250 

Problem 
ID 

Global 
solution 

Best Average Worst 

G10 
(min) 

7049.33 7049.33 7052.36 7055.29 

 
 

4   Conclusion 
This paper presents the effects of fuller utilisation of 
crossover operator for constrained optimization 
problems.  Starting from the standard form – linear 
combination, the effects of multiple crossover of the 
same pair of parents and then the effects of multiple 
crossover of a parent with all other individuals from the 
population are presented.  The proposed method was 
implemented in the form of the M-CA algorithm, which 
gave very good results (better or equal than results 
published to date) on the set of eleven test functions.  In 
first test the obtained results were equal to the global 



solution for 8 out of 11 tested functions, furthermore 6 
results were completely stable – equal to global optimum 
and identical in all test runs. In the second test 9 out of 
11 results were stable and the remaining 2 was better 
than results obtained by other evolutionary methods in 
terms of stability or/and value achieved. Of course all 
results obtained by M-CA were feasible which is not a 
common feature of other evolutionary methods.  
At the same time, however, the cost in terms of the 
number of function evaluations was very high – in 
extreme situation equal to 1500 function evaluations in 
each iteration. That level of cost might be not acceptable 
in real life problem solving situation. 
However, these tests did not examine the effect of the 
values of a number of arbitrarily adopted M-CA 
parameters on the quality of the results.  Therefore, 
further study of their effect on the effectiveness of the 
method is needed.  
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