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Abstract: - This paper extends the theoretical analysis of the Adaptive Reservoir Genetic Algorithm (ARGA),
avariant of a Genetic Algorithm (GA) proposed by the authors in [4]. We show that ARGA visits the global
optimum after a finite number of iterations with probability one, regardiess of the initidization of the

popul ation.
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1 Introduction

Genetic Algorithms (GAs) are stochastic search
strategies that mimic the evolution of populations of
individuals. GAs, in their classca outfit [3], [2]
proved to be insufficient in coping with difficult
optimization  problems  (like  non-separable
problems, highly epistatic, deceptive, or highly
multi-modal). This is due mainly to the fact that
GAs in the sandard form lack the required
adaptability  (exploration/exploitation  balance),
being often prone to premature convergence [1]. In
[4] we propose a novel model of a GA, that better
adapts exploration/exploitation during time, based
on a control mechanism were the control signal is
the best fitness in the populaton, while the
controlled variable is the population diversty
through the mutation operator. The present paper
gives a limit behavior in finite space and discrete
time. Following a theorem from [6] it is shown that
ARGA finds the globd optimum with probability
one, in finite time and regardless of the initidization
of the population. Thus, ARGA is shown to be well
behaved (finds the global optimum in finite time)
both in theory and in practice as other papers by the
authors have shown [4], [5].

2 ARGA: Limit Behavior In Finite
Space And Discrete Time

2.1 ARGA dructure

ARGA brings a novel mechanism for mutating the
individuas in the populaion in conjunction with the

selection mechanism. In a standard GA each
chromosome in the population can be mutated,
depending on the probability of mutation [2]. In
ARGA, we restrict mutations to a subpopulation of
chromosomes, caled reservoir. Thereservoir hasits
individuals mapped onto a fixed population. The
number of chromosomes in the mutant
subpopulation (reservoir) is called diameter and is
adapted during run. If there is no improvement in
the best solution found during a certain number of
generations, the diameter of the reservoir grows, in
order to obtain a larger diversity in the population
and to recast the search in a better niche of the
search space. When this event occurs (i.e. an
improvement beyond a certain threshold) the
diameter of the reservoir is reset to the initial value.
The dgorithm is given in pseudo-code, as follows
from Figure 1.

The adjustment of the reservoir’s diameter D(t)
is first done by comparing the best individua in the
current generation t with the best individua in the
previous generation t-1. If there is an improvement
of the best fitness found beyond a certain threshold
e, the diameter is reset to its initid vaue D.
Otherwise, a constant rate ¢ > 0isadded to D(t-1)
and the integer part of the sum is taken to be the
new reservoir's diameter D(t). If the reservoir
becomes bigger than the size of the population,
again the diameter isreset to itsinitia vaue D.



ARGA ()

-Start with an initia time counter t.
-Initidlise a random population P(t) within
specific bounds.
-Set the initia value of reservoir's diameter D,
to Dx.
-Compute fitness for dl individuas.
while not done do
-Increase the time counter.
-Select parents to form the intermediate

population by applying binary
tournament.
-Perform mutation on reservoir r (t).

{

-Select reservoir r (t), by choosing in &
binary tournament the less fitted D

individuds in  the intermediate
popul ation.
-Perform mutation on r (t) with a

random rate between 0 and P,,.
-Introduce mutants in the intermediate

population.

}

-Perform  (one-point)  crossover on
intermediate population with arate P,.
-Form the population in the next

generation by gpplying a k-dlitist scheme
to intermediate population.
-Compute the new fitness for dll
individuds.
-Adjust the diameter of the reservoir:
D(b).
od

Figure 1. ARGA'’s structure.

Thus, ARGA acts like an adaptively controlled
search mechanism where the control sgnd is given
by the best fitness found in the current generation,
and the end-controlled parameter is the diversity of
the population, through the mutation operator. A
typical dynamics of ARGA is given in Figure 2. It
may be seen that as the best fitness doesn't increase
for severa generations in a row, the mean fitness of
the population starts decreasing due to a larger
exploration of the search space: the reservoir grows,
more individuals are subject to mutations, there is a
larger genotypic diversity in the population.

As a new better super individua is found, a
takeover mechanism starts. The reservoir is reset to
its initid vaue Dy (usudly a smdl integer vaue,
such that Dy << N), less individuas are subject to
mutations, and the population becomes less diverse
(more homogenous), due to crossovers that together
with sdlection and small scale mutations act like a
convergence force to the aready found best
individual. ARGA, thus exploits the search space
around the super individud. For example, in Figure
2, a super individual was found around generation
35 (having a fitness below 0.95), and the agorithm,
cannot find a better one until generation 85 (an
individual of fitness above 0.95). First, ARGA starts
the exploitation around the individua with fitness
below 0.95. As no better individual is found for
severd generations, at about generation 50, a
mechanism mmes into effect pushing ARGA from
exploitation, more into exploraion of the search
space, until anew best individua is found.
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Figure 2. A typical dynamics of ARGA.

ARGA has the following specific parameters.
k in the k-dlitist scheme, is the number of the
mogt fitted chromosomes that are automatically
copied in the next generation.
D, isthe initid sze or diameter of the reservoir
r.
e is the threshold beyond which a variation of
the best fitness is considered significant.
c isarea value parameter that gives the rate at
which D(t) grows when there is no significant
improvement of the best fitness.
These are parameters specific to ARGA, but the
actua number of parameters is bigger by adding the
parameters in a standard GA: the size of the
population N, the crossover rate P, and the



maximum mutation rate: P, Details about ARGA
architecture, theoretical anaysis of its structure and
comparison with other similar srategies can be
found in [4].

2.2 Convergence analysis

The convergence anadysis for ARGA uses
Evolutionary  Algorithms (EAs)  convergence
theorems given in [6]. Other convergence theorems
applying Markov Chain analysis are summarized in
[6] and [7]. Wefirst review the main theoretical fact
from [6] and then we apply the respective theory to
ARGA. Let (x;,%,,..xy )l ¢V denote the
population of N parents and c is the search set (the
domain of the individuas). A general EA proceeds
asfollows: a firdt, R parents are selected to serve as
mates for the  recombination  process.
mat:c" ® c® where 2£REN. These individuds
ae then recombined by the procedure
reco:c " ® c yidding a patial offspring. Next, the
mutation is applied to this offspring generating the
complete offspring: mut: c ® c . After generating
dl M offspring in this manner, the selection
procedures decides which of the offspring and
possbly parents remain in the populatiion to form
the new generation of parents, in the next
generation: sel:c?® c™ with Q 3 N. After
formdizing these operations during a generation of
the EA, severa properties of the variation and
selection operators are given in what follows:

Conditions:
a)" X1 (Xy, X, oo Xy ): P{XT reco(mat (3, Xy,...., Xy )} 2 d, >0.
b)For every pair X, Y| C there exists a finite path
(X1,%z,-1%q) OF pairwise distinct points with x, = x
and x, =y such that:P{x, =mut(x )}3 d_ >0 for
al i between 1 and g-1.
b')For every pair X, ylI ¢ holds:

P{y = mut(x)} 2 d,>0.

i+l

d)Let vzi\,(xl,x2 ...... xQ):rrla({f(m):izl ..... Q} denote
the best fitness value within a population of Q

individuds (Q 3 N). The sdlection verifies the
condition:

P{v*N (sel(xl,x2 ...... xQ)): Vo (xl,x2 ...... xQ)}:l.

The conditions above bear the following meaning:
assumption (@) means that every parent may be
sdected for mating and is not atered by
recombination with minimum probability d, >0,

where we might recognize that d, =1- P, with P,

the probability to do crossover. Assumption (b)
ensures that every individual can be changed to an
arbitrary other individua by a finite number of
successive mutations, while assumption (b") asserts
the same but within a single mutation. Assumption
(c) says that every individua competing for surviva
may survive with minimum probability d, >0. This
assumption works for al selection strategies besides
truncation selection. Assumption (d) makes sure
that the best individuad among the competitors in
the sdection process will survive with probability
one. This assumption is vaid for al dlitist selection
strategies.

Theorem:

If the assumptions (a), (b) and (c) are vaid then
the evolutionary agorithm vidts the globd
optimum after a finite number of iterations with
probability one, regardless of the initidization. If
assumption (d) is vaid additiondly and the
selection method chooses from the parents as well
as from the offspring then the evolutionary
algorithm converges completely and n mean to the
globa optimum regardless of the initidization. For
a demongtration of the theorem see [6].

Let us apply the theorem to ARGA by showing
that it obeys the assumptions in the first part of the
theorem. Let us define the sequence (X, ):tT N to
be a sequence of populations generated by some
evolutionary algorithm and let:

F, = max{f (lel),..., f(XtYN )} denote the best
objective vaue of the population at generation t.

Let f"=ma{f(x):x] c}withf:c ® R, be the
globa optimum (maximum) for the function f. We
define T=min{t? 0: F, = f'} asthe first hitting time
of the globa optimum. The first part of the theorem
actually shows that P{T <¥}=1 regardiess of the

initidlization. As ARGA applies crossover with
some probability 0< P, <1 we have that:

"XT (X, Xgreee Xy ): P{XT reco{mat(x;, Xy, ... x5 ))} 2 d, =1- P.>0.
Therefore, ARGA satisfies condition (a). In
practice, ARGA has been used before [4] with
P. =1, however the convergence is guaranteed

theoretically only with crossover probabilities lower
than 1 (with - P, made arbitrary small). We next
check assumption (c). As ARGA wuses a
combination of tournament selection and Kk-ditism,
each member of the population has a non-zero
probability to be selected, that is.



"XT (%, Xoyeeos xQ): P{xT sel(x, X,,....xy )} 3 ds > 0.
To check assumption (b) we have two possible
hypothesis:

bA) al dements x; (i=1 to q) on the path that
connects through successve mutations, any two
individuds x,y1 c , lie within the reservoir. That
means that al elements in the path are aso in the
reservoir. Therefore, they are subjected to mutation
done with probability p,,>0. Equivalently, we have
that:

P{x.,, =mut(x,)} = p,, >0,"i=1,....q. Therefore, in
this case condition (b) is fulfilled.
bB) if $x 1 r (i.e. thereis at least one eement in

the path that connects x to y, that does not belong to
the reservoir). In this case the reservoir grows such

that after T; <¥ generations we have x T r(T, ).
Therefore, we must wait for T, generations until the
reservoir grows such as to containx . Until this
moment x remains unatered with the probability

(P(x )" @- P.(x )" >0 where we used the fact
tha ARGA fulfillsp(x )>0 and P(x )<1, as
discussed before. We get that:

P{x o =mutlx, )} = @1 (x )L Po(x )" >0
where we usedthat 0< p,,<P,, P, beingapostive
parameter of ARGA. To consder that ARGA
fulfills condition (b) we ill have to show that T,
<¥. Suppose T, = ¥. This means the reservoir never
grows. The reservoir not growing means that in
each generation a better fitness is discovered. It
follows that the sequence {F}wo IS dtrictly
increasing with time. However, as ARGA works on
finite space, it means that the set {f(x): xI c} is
aso finite. Thus, the reservoir cannot grow for
every generation ad infinitum We thus have that T,
<¥ . Showing that ARGA fulfills conditions (a), (b),
() and applying the theorem given before, we
deduct that ARGA visits the global optimum after a
finite number of generations with probability one,
regardless of the initialization.

Two minor modifications have to be made to the
origind verson of ARGA in [4], in order that the
convergence theorem be applied. That is:P, <1 and
P, >0, ingead of 0O£P. £1 and O£ p,£05=P,,
likein theinitia verson [4].

3 Conclusions
ARGA has shown good search behavior both on test

problems [4] and on real-world gpplications like the
Brain Computer Interface (BCI) [5]. In this paper,
we further investigate the efficient behavior of
ARGA by showing that it finds the globa optimum,
with probability one, regardiess of initidization.
However, this property is a macroscopic property
being too general to give insght of the way
convergence is achieved: convergence dynamics,
parameter influence on dynamics. A microscopic
approach is needed to shed light on these matters.
For future work we will concentrate our attention
towards a microscopic analysis, however we aware
of the fact that this anayss might be problem-
dependent, and difficult for problems for which the
search landscape is not known beforehand.
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