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Abstract: - This paper extends the theoretical analysis of the Adaptive Reservoir Genetic Algorithm (ARGA), 
a variant of a Genetic Algorithm (GA) proposed by the authors in [4]. We show that ARGA visits the global 
optimum after a finite number of iterations with probability one, regardless of the initialization of the 
population.  
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1 Introduction 
Genetic Algorithms (GAs) are stochastic search 
strategies that mimic the evolution of populations of 
individuals. GAs, in their classical outfit [3], [2] 
proved to be insufficient in coping with difficult 
optimization problems (like non-separable 
problems, highly epistatic, deceptive, or highly 
multi-modal). This is due mainly to the fact that 
GAs in the standard form lack the required 
adaptability (exploration/exploitation balance), 
being often prone to premature convergence [1]. In 
[4] we propose a novel model of a GA, that better 
adapts exploration/exploitation during time, based 
on a control mechanism were the control signal is 
the best fitness in the population, while the 
controlled variable is the population diversity 
through the mutation operator. The present paper 
gives a limit behavior in finite space and discrete 
time. Following a theorem from [6] it is shown that 
ARGA finds the global optimum with probability 
one, in finite time and regardless of the initialization 
of the population. Thus, ARGA is shown to be well 
behaved (finds the global optimum in finite time) 
both in theory and in practice as other papers by the 
authors have shown [4], [5]. 

 

2 ARGA: Limit Behavior In Finite 
Space And Discrete Time 
2.1 ARGA structure 

ARGA brings a novel mechanism for mutating the 
individuals in the population in conjunction with the 

selection mechanism. In a standard GA each 
chromosome in the population can be mutated, 
depending on the probability of mutation [2]. In 
ARGA, we restrict mutations to a subpopulation of 
chromosomes, called reservoir. The reservoir has its 
individuals mapped onto a fixed population. The 
number of chromosomes in the mutant 
subpopulation (reservoir) is called diameter and is 
adapted during run. If there is no improvement in 
the best solution found during a certain number of 
generations, the diameter of the reservoir grows, in 
order to obtain a larger diversity in the population 
and to recast the search in a better niche of the 
search space. When this event occurs (i.e. an 
improvement beyond a certain threshold) the 
diameter of the reservoir is reset to the initial value.  
The algorithm is given in pseudo-code, as follows 
from  Figure 1. 
 The adjustment of the reservoir’s diameter ∆(t) 
is first done by comparing the best individual in the 
current generation t with the best individual in the 
previous generation t-1. If there is an improvement 
of the best fitness found beyond a certain threshold 
ε , the diameter is reset to its initial value ∆0. 
Otherwise, a constant rate c > 0 is added to ∆(t-1) 
and the integer part of the sum is taken to be the 
new reservoir’s diameter ∆(t). If the reservoir 
becomes bigger than the size of the population, 
again the diameter is reset to its initial value ∆0. 
 
 
 
 



 

ARGA ( ) 
{ 
      -Start with an initial time counter t.  

-Initialise a random population P(t) within 
specific bounds. 
-Set the initial value of reservoir’s diameter ∆, 
to ∆0. 

 -Compute fitness for all individuals. 
 while not done do 
 -Increase the time counter. 

-Select parents to form the intermediate      
population by applying binary 
tournament. 

 -Perform mutation on reservoir ρ (t). 
  { 

-Select reservoir ρ (t), by choosing in a 
binary tournament the less fitted ∆
individuals in the intermediate 
population.  
-Perform mutation on ρ (t) with a 
random rate between 0 and Pm. 
-Introduce mutants in the intermediate 
population.   

 }    
-Perform (one-point) crossover on 
intermediate population with a rate Pc . 
-Form the population in the next 
generation by applying a k-elitist scheme 
to intermediate population. 
-Compute the new fitness for all 
individuals. 

 -Adjust the diameter of the reservoir: 
∆(t). 
 od 
} 

Figure 1. ARGA’s structure. 
 
 
Thus, ARGA acts like an adaptively controlled 
search mechanism where the control signal is given 
by the best fitness found in the current generation, 
and the end-controlled parameter is the diversity of 
the population, through the mutation operator. A 
typical dynamics of ARGA is given in Figure 2. It 
may be seen that as the best fitness doesn’t increase 
for several generations in a row, the mean fitness of 
the population starts decreasing due to a larger 
exploration of the search space: the reservoir grows, 
more individuals are subject to mutations, there is a 
larger genotypic diversity in the population. 

 As a new better super individual is found, a 
takeover mechanism starts. The reservoir is reset to 
its initial value ∆0 (usually a small integer value, 
such that ∆0 << N), less individuals are subject to 
mutations, and the population becomes less diverse 
(more homogenous), due to crossovers that together 
with selection and small scale mutations act like a 
convergence force to the already found best 
individual. ARGA, thus exploits the search space 
around the super individual. For example, in Figure 
2, a super individual was found around generation 
35 (having a fitness below 0.95), and the algorithm, 
cannot find a better one until generation 85 (an 
individual of fitness above 0.95). First, ARGA starts 
the exploitation around the individual with fitness 
below 0.95. As no better individual is found for 
several generations, at about generation 50, a 
mechanism comes into effect pushing ARGA from 
exploitation, more into exploration of the search 
space, until a new best individual is found. 

 
Figure 2. A typical dynamics of ARGA. 

 
ARGA has the following specific parameters: 
• k  in the k-elitist scheme, is the number of the 

most fitted chromosomes that are automatically 
copied in the next generation. 

• ∆0 is the initial size or diameter of the reservoir 
ρ. 

• ε  is the threshold beyond which a variation of 
the best fitness is considered significant. 

• c is a real value parameter that gives the rate at 
which ∆(t) grows when there is no significant 
improvement of the best fitness.  

These are parameters specific to ARGA, but the 
actual number of parameters is bigger by adding the 
parameters in a standard GA: the size of the 
population N, the crossover rate Pc and the 



 

maximum mutation rate: Pm. Details about ARGA 
architecture, theoretical analysis of its structure and 
comparison with other similar strategies can be 
found in [4].  

2.2  Convergence analysis 

The convergence analysis for ARGA uses 
Evolutionary Algorithms (EAs) convergence 
theorems given in [6]. Other convergence theorems 
applying Markov Chain analysis are summarized in 
[6] and [7]. We first review the main theoretical fact 
from [6] and then we apply the respective theory to 
ARGA. Let ( ) N

Nxxx χ∈...,,, 21  denote the 
population of N parents and χ is the search set (the 
domain of the individuals). A general EA proceeds 
as follows: at first, R parents are selected to serve as 
mates for the recombination process: 

RN χχ →:mat  where NR ≤≤2 . These individuals 
are then recombined by the procedure: 

χχ →R:reco  yielding a partial offspring. Next, the 
mutation is applied to this offspring generating the 
complete offspring: χχ →:mut . After generating 
all M offspring in this manner, the selection 
procedures decides which of the offspring and 
possibly parents remain in the population to form 
the new generation of parents, in the next 
generation: NQ χχ →:sel  with Q ≥ N. After 
formalizing these operations during a generation of 
the EA, several properties of the variation and 
selection operators are given in what follows: 
      Conditions: 
a) ( ) ( )( ){ } .0....,,,matreco :....,,, 2121 >≥∈∈∀ rNN xxxxPxxxx δ  

b)For every pair χ∈yx,  there exists a finite path 
( )qxxx ...,,, 21  of pairwise distinct points with xx =1  
and yxq =  such that: ( ){ } 0mut1 >≥=+ mii xxP δ  for 
all i between 1 and q-1. 
b’)For every pair χ∈yx,  holds: 

( ){ } 0mut >≥= mxyP δ . 

c) ( ) ( ){ } .0....,,,sel :....,,, 2121 >≥∈∈∀ sNQ xxxxPxxxx δ  

d)Let ( ) { }Qixfxxxv iQQ ...,,1:)(max ....,,, 21
* == denote 

the best fitness value within a population of Q 
individuals (Q ≥ N). The selection verifies the 
condition:  

( )( ) ( ){ } 1....,,,....,,,sel 21
*

21
* == QQQN xxxvxxxvP .  

The conditions above bear the following meaning: 
assumption (a) means that every parent may be 
selected for mating and is not altered by 
recombination with minimum probability 0>rδ , 

where we might recognize that cr P−= 1δ  with cP  
the probability to do crossover. Assumption (b) 
ensures that every individual can be changed to an 
arbitrary other individual by a finite number of 
successive mutations, while assumption (b´) asserts 
the same but within a single mutation. Assumption 
(c) says that every individual competing for survival 
may survive with minimum probability 0>sδ . This 
assumption works for all selection strategies besides 
truncation selection. Assumption (d) makes sure 
that the best individual among the competitors in 
the selection process will survive with probability 
one. This assumption is valid for all elitist selection 
strategies. 
       Theorem:  

If the assumptions (a), (b) and (c) are valid then 
the evolutionary algorithm visits the global 
optimum after a finite number of iterations with 
probability one, regardless of the initialization. If 
assumption (d) is valid additionally and the 
selection method chooses from the parents as well 
as from the offspring then the evolutionary 
algorithm converges completely and in mean to the 
global optimum regardless of the initialization. For 
a demonstration of the theorem see [6].  
 Let us apply the theorem to ARGA by showing 
that it obeys the assumptions in the first part of the 
theorem. Let us define the sequence ( ) N∈tX t :  to 
be a sequence of populations generated by some 
evolutionary algorithm and let: 

 
 ( ) ( ) {  } N  t t t X f X f F , 1 , ..., , max =    denote the best 

objective value of the population at generation t.  

Let { } Rfxxff →∈=∗ χχ : with :)(max , be the 
global optimum (maximum) for the function f. We 
define { }∗=≥= fFtT t:0min  as the first hitting time 
of the global optimum. The first part of the theorem 
actually shows that { } 1=∞<TP  regardless of the 
initialization. As ARGA applies crossover with 
some probability 10 << cP  we have that: 

( ) ( )( ){ } .01....,,,matreco :....,,, 2121 >−=≥∈∈∀ crNN PxxxxPxxxx δ

Therefore, ARGA satisfies condition (a). In 
practice, ARGA has been used before [4] with 

1=cP , however the convergence is guaranteed 
theoretically only with crossover probabilities lower 
than 1 (with 1- cP  made arbitrary small). We next 
check assumption (c). As ARGA uses a 
combination of tournament selection and k-elitism, 
each member of the population has a non-zero 
probability to be selected, that is: 



 

( ) ( ){ } .0....,,,sel :....,,, 2121 >≥∈∈∀ sNQ xxxxPxxxx δ  
To check assumption (b) we have two possible 
hypothesis: 
bA) all elements xi (i=1 to q) on the path that 
connects through successive mutations, any two 
individuals χ∈yx, , lie within the reservoir. That 
means that all elements in the path are also in the 
reservoir. Therefore, they are subjected to mutation 
done with probability mp >0. Equivalently, we have 
that: 

{ } qipxxP mii ...,,1,0)(mut1 =∀>==+ . Therefore, in 
this case condition (b) is fulfilled. 
bB) if ρλ ∉∃ x  (i.e. there is at least one element in 
the path that connects x to y, that does not belong to 
the reservoir). In this case the reservoir grows such 
that after Tλ <∞ generations we have ( )λλ ρ Tx ∈ . 
Therefore, we must wait for Tλ generations until the 
reservoir grows such as to contain λx . Until this 
moment 

λx  remains unaltered with the probability 

( )( ) ( )( ) 01 >− λλ
λλ

T
c

T
s xPxP  where we used the fact 

that ARGA fulfills: ( ) 0>λxPs
 and ( ) 1<λxPc , as 

discussed before. We get that: 

( ){ } ( ) ( )( ) 01mut 1
1 >−⋅⋅== +

+
λλ

λλλλ
T

c
T
sm xPxPpxxP  

where we used that ,0 mm Pp << mP  being a positive 
parameter of ARGA. To consider that ARGA 
fulfills condition (b) we still have to show that Tλ 
<∞. Suppose Tλ = ∞. This means the reservoir never 
grows. The reservoir not growing means that in 
each generation a better fitness is discovered. It 
follows that the sequence {Ft}t≥0 is strictly 
increasing with time. However, as ARGA works on 
finite space, it means that the set ( ){ }χ∈xxf :  is 
also finite. Thus, the reservoir cannot grow for 
every generation ad infinitum. We thus have that Tλ 
<∞. Showing that ARGA fulfills conditions (a), (b), 
(c) and applying the theorem given before, we 
deduct that ARGA visits the global optimum after a 
finite number of generations with probability one, 
regardless of the initialization.  
Two minor modifications have to be made to the 
original version of ARGA in [4], in order that the 
convergence theorem be applied. That is: 1<cP  and 

0>mp , instead of 10 ≤≤ cP  and mm Pp =≤≤ 5.00 , 
like in the initial version [4]. 
 

3 Conclusions 
ARGA has shown good search behavior both on test 

problems [4] and on real-world applications like the 
Brain Computer Interface (BCI) [5]. In this paper, 
we further investigate the efficient behavior of 
ARGA by showing that it finds the global optimum, 
with probability one, regardless of initialization. 
However, this property is a macroscopic property 
being too general to give insight of the way 
convergence is achieved: convergence dynamics, 
parameter influence on dynamics. A microscopic 
approach is needed to shed light on these matters. 
For future work we will concentrate our attention 
towards a microscopic analysis, however we aware 
of the fact that this analysis might be problem-
dependent, and difficult for problems for which the 
search landscape is not known beforehand. 
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