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Abstract: - Real Data are often not precise but more or less fuzzy. This is always the case for measure-
ments of continuous quantities. Before making statistical analyses of such data this kind of uncertainty has 
to be described quantitatively. This can be done using fuzzy numbers which are characterized by so called 
characterizing functions. These characterizing functions are special types of membership functions. In the 
fuzzy set literature they are also called fuzzy intervals.  

Based on this description of fuzzy data a non-precise sample consists of a finite sequence **
1 ,, nxx L  of 

fuzzy numbers *
ix . 

Facing this kind of data statistical methods have to be adapted to the situation of fuzzy data. This is pos-
sible and related statistical procedures will be presented in the contribution. These are especially: 

Descriptive statistical methods 
Generalized point estimation procedures 
Generalized confidence intervals 
Generalized classical test procedures 
Generalized Bayesian methods 
 

Key-Words:- Bayesian inference, descriptive statistics, fuzzy data, non-precise numbers, parameter estima-
tion, statistical inference, statistical tests 

 
 

1 Non-Precise Data and Fuzzy Sets 
Real data are often not precise numbers or vectors 
but more or less non-precise. This is true for quali-
tative data as well as for measurement results. Even 
precision measurements of continuous quantities 
are not precise numbers but more or less fuzzy. 

In order to apply statistical procedures to non-
precise data it is necessary to model non-precise 
data in a reasonable quantitative (mathematical) 
way. 

In case of one-dimensional data the individual 
observations can be modelled by special member-
ship functions of special fuzzy subsets of the set 
RI of real numbers. These special membership 

functions are called characterizing functions be-
cause they are characterizing non-precise numbers 
as suitable generalizations of indicator functions 

{ }( )⋅xI  of precise real numbers x, and indicator 

functions.  
A characterizing function is a real function ( )⋅ξ  

of a real variable x which obeys the following: 
(1) ( ) RIxx ∈≤≤ allfor 10 ξ  

(2) ( ) 1: 00 =∈∃ xRIx ξ  

(3) ( ]1,0∈∀δ  the so-called cut-δ  

 ( )[ ] ( ){ }δξξδ ≥∈=⋅ xRIxC ::   

  is a closed finite interval [ ]δδ ba ,  
A characterizing function characterizes a non-
precise number ∗x  which describes a non-precise 
observation. 

Remark: In fuzzy set theory the above defined non-
precise numbers are also called fuzzy intervals. 

Examples of one-dimensional non-precise data 
are geodetical distances, life times of biological 
units, and weights. 

An important topic is how to obtain the charac-
terizing function of a non-precise datum ∗x . Details 
on this are given in the monograph [7]. 

For vector valued quantities a generalization of 
real vectors is necessary. This is possible defining 
so-called non-precise vectors. A non-precise vector 
is defined by its so-called vector-characterizing 
function ( )⋅⋅ ,,Lζ  which is a real function of k real 
variables obeying the following: 

(I) ( ) 1,,0 1 ≤≤ kxx Lζ  for all ( ) k
k RIxx ∈,,1 L  

(II) ( ) ( ) 1,,:,, 11 =∈∃ k
k

k xxRIxx LL ζ  



 

(III) ( ]1,0∈∀δ  the so-called cut-δ  

( )[ ] =⋅⋅ :,,LζδC  

                ( ) ( ){ }δζ ≥∈= k
k

k xxRIxx ,,:,, 11 LL   

 is a compact and convex subset of kRI  

Remark: Vector-characterizing functions are spe-
cial membership functions of fuzzy subsets of the 
k-dimensional Euclidian space kRI . 

For a precise k-dimensional vector 
( )kxxx ,,1 L=  the corresponding vector-character-

izing function is the one-point indicator function 
( ){ }( )⋅⋅ ,,,,1 LL kxxI . For a k-dimensional interval 

[ ]ii

k

i
ba ,

1=
Χ  the corresponding vector-characterizing 

function is the indicator function 
[ ]

( )⋅⋅
=
Χ

,,
,

1

L
ii

k

i
ba

I . 

An example of how to obtain the vector-char-
acterizing function of a non-precise vector is given 
for a 2-dimensional quantity by the following: Let 
the position of an object be given on a radar screen. 
The light intensity determines the vector-charac-
terizing function ( )⋅⋅,ζ  of the non-precise position 

vector ∗x . Let ( )21, xxφ  denote the light intensity in 

the plane 2RI . Then the vector-characterizing func-
tion ( )⋅⋅,ζ  of the 2-dimensional non-precise vector 

∗x  is given by its values 

( ) ( )

( )
( )21

,

21
21

,max

,
,

2
21

xx

xx
xx

RIxx
φ

φ
ζ

∈

=  for all ( ) 2
21, RIxx ∈ . 

2 Non-Precise Samples 
A sample of a stochastic quantity X consists of n 
observations nxx ,,1 L . In case of non-precise ob-
servations – which is always the case for con-
tinuous quantities – the sample consists of n non-
precise numbers ∗∗

nxx ,,1 L  with corresponding 
characterizing functions ( ) ( )⋅⋅ nξξ ,,1 L . 

In statistical inference the elements ix  of the 
observation space XM  of the stochastic quantity X 
are combined to a vector ( )nxxx ,,1 L=  which is an 

element of the sample space n
XM  with 

 XXX
n

X MMMM ×××= L ,  
i. e. the Cartesian product of n copies of the obser-
vation space XM . Statistical procedures are func-
tions defined on the sample space. 

In the standard setting of statistics the combina-
tion of a sample is trivial. This is not so for non-
precise samples by the following reason: A non-
precise sample consists of a vector ( )∗∗

nxx ,,1 L  of 
non-precise numbers ∗∗

nxx ,,1 L . This is essentially 

different to a non-precise vector ∗x  in the sample 
space n

XM . But in order to generalize statistical 
procedures using the extension principle, the non-
precise sample has to be combined into a non-
precise vector. This is done by a so-called combina-
tion rule which is a family of functions related to 
triangular norms. 

The vector-characterizing function ( )⋅⋅ ,,Lζ  of 
the combined non-precise sample ∗x  is given, us-
ing the characterizing functions ( )⋅iξ  of ∗

ix , by a 
combination rule C  which gives a combination 

( )⋅⋅ ,,LnC  for every NIn ∈ : 
( ) ( ) ( )( )nnnn xxCxx ξξζ ,,,, 111 LL =    

for all ( ) n
n RIxx ∈,,1 L . 

The most important combination rule is 

( )
( )

( ) ( ) n
nii

n
n RIxxxxx ∈=

=
,,allfor min,, 1

11i
1 LL ξζ . 

In general combination rules have to fulfill the 
following: 
(i) ( )[ ] ( ) RIxxxC ∈= allfor 111 ξξ  

(ii) { }( ) { }( )[ ] ( ){ }( )nxxnxxn xxIxIxIC nn ,,,, 1,,1 11 LL L=   

 for all precise RIxi ∈  and all ( ) n
n RIxx ∈,,1 L  

(iii)  [ ]( ) [ ]( )[ ]=nbaban xIxIC
nn ,1, ,,

11
L    

 [ ] [ ]( )nbaba xxI nn ,, 1,, 11 LL××=  

 for all intervals [ ]ii ba ,  and all ( ) n
n RIxx ∈,,1 L  

3 Descriptive Statistics for  
Non-Precise Data 

Empirical distribution functions as well as histo-
grams have to be adapted to the situation of non-
precise data. This can be done in the following 
way: The characterizing functions ( )⋅iξ  of the non-
precise observations ∗

ix  are used to construct a his-
togram whose heights over the classes are non-
precise numbers. For details see [6]. For generaliza-
tions of the empirical distribution function see the 
monograph [7]. 

4 Generalizations of Statistical  
Inference 

Statistical inference procedures can be adapted to 
the situation of non-precise data using the com-

bined non-precise sample ∗x  and the extension 
principle from fuzzy set theory. 

Let ( )⋅⋅ ,,Lζ  be the vector-characterizing func-
tion of the combined non-precise sample ∗x . Then 
the generalized (fuzzy) value 

 ( ) ( )∗∗∗∗ == xss nxxs ,,1 L   

of a classical real valued statistic 
( )nXXS ,,1 Ls= , 



 

i. e. RIM n
X →:s  with continuous function 

( )⋅⋅ ,,Ls  is given by the characterizing function 

( )⋅η  of ∗s , whose values ( )yη  are determined by 
the extension principle to be 

( ) ( ) ( ){ } ( )
.

otherwise0

:if:sup
RIy

yxyxx
y ∈∀







 =∃=

=
xssζ

η

 

Remark: The continuity of ( )⋅⋅ ,,Ls  guarantees that 

( )⋅η  is a characterizing function in the sense of the 
definition given in section 1. 

4.1 Parameter Estimation  

Point estimators ( )nxx ,,ˆ
1 Lϑθ =  for parameters θ  

can be adapted by the definition above immedi-

ately. Here Θ→n
XM:ϑ  is a function from the 

sample space to the parameter space Θ  of the sto-
chastic model ( ) Θ∈⋅ θθ ,~ fX . The fuzzy value 

of the generalized estimator  

( )∗∗ = xϑθ̂  

is given by its characterizing function ( )⋅η  as 
above. 

The generalization of confidence sets is possible 
in the following way: Let ( )nXX ,,1 Lκ  be a confi-
dence function with given confidence level α−1 , 
i. e. for precise data nxx ,,1 L  the value 

( )nxx ,,1 Lκ  is a subset of Θ  with probability of 

covering the true parameter 0θ  is α−1 , i. e. 
( ){ } ακθ −=∈ 1,,10 nXXPr L , 

then the generalized confidence set based on non-
precise data with non-precise combined sample is a 

fuzzy subset ∗Θ  of the parameter space Θ . The 

membership function ( )⋅ϕ  of ∗Θ  is defined by 

( ) ( ) ( ){ } ( )






 ∈∃∈

=⋅
otherwise0

:if:sup xxxx κθκθζ
ϕ   

for all Θ∈θ . 

Remark: Generalized confidence sets are classical 
examples of fuzzy subsets. For precise data the 
given concept yield the indicator function of the 
classical confidence set. 

4.2 Statistical Tests  
Classical test statistics ( )n,X,XT L1t=  yield pre-
cise values ( )nxxt ,,1 Lt=  for precise sample 

nxx ,,1 L . In case of fuzzy samples ∗∗
nxx ,,1 L  the 

values of test statistics become fuzzy. Therefore 
suitable decision rules for acceptance or rejection 
of hypotheses are necessary. This is possible using 

the concept of p-values. For details see the forth-
coming encyclopedia article [10]. 

4.3 Bayesian Inference 
Adapting Bayes' theorem  

( ) ( ) ( )nn xxxx ,,;,,| 11 LlL θθπθπ ⋅∝  for Θ∈θ   

to the situation of non-precise data ∗∗
nxx ,,1 L  an a-

posteriori density ( )∗∗∗
nxx ,,| 1 Lθπ  with fuzzy val-

ues of the density is obtained. Based on this fuzzy 
a-posteriori density predictions and decisions are 
possible. Details on this are given in the book [7] 
and in the paper [8] .  
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