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Abstract: - This paper presents results obtained when developing more efficient clustering methods for neuro-
fuzzy model identification. Nelder-Mead optimisation is applied for fine tuning subtractive clustering based 
rule selection parameters. The performance is tested with various data sets against each other and earlier works 
done. The proposed method seems to produce more accurate models with fewer rules. 
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1  Introduction 
Fuzzy system identification is a well-established 
field and various methods are available ranging from 
membership function refinement to automatic rule 
generation, c.f. [10],[4]. The rule extraction phase is 
still not straightforward but more like state-of-the-
art. Problems encountered during the identification 
phase consider typically: 1) how many rules are 
enough, 2) which input variables should be taken 
into account. 
 This paper addresses both problems and presents 
new results, which seems to produce more accurate 
models with fewer rules. The basic idea is to fine 
tune subtractive clustering based rule generation by 
optimising candidate rule selection parameters. 
Nelder-Mead (NM) is applied in this paper although 
other direct search methods should give similar 
results. Also genetic algorithms (GA) were tested 
but NM seems to be a reasonable compromise 
between complexity and efficiency. 
 The method is presented in Chapter 2 and its 
behaviour is analysed Chapter 3 which also contains 
comparisons with other methods.   
 

 
2 Method descriptions 
 
 
2.1 Subtractive clustering 
Subtractive clustering algorithm [5,6] uses data 
points as candidates for cluster centers. Data matrix 
with n data points { }nxx ,...,1  in M dimensional 

space includes also output and it is normalized 
within hypercube.   

  Density Measure for all data points is calculated 
first. For ix  it is defined as :  
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if data point has many neighbouring points it will has 
high density measure. ar  defines the circle where 

neighbouring data points lies and points outside of 
this circle has only little effect. Data point with 
highest value is selected as first cluster center.  
 Let 1cx  be the selected point and 

1cD  its density 

measure. br  is then used as radius which defines the 

neighbourhood where the density reduction is done. 
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After reduction is done data point with highest 
density measure is selected as cluster 2cx . Next we 

use cluster 2cx  for calculating density reductions and 

this phase is repeated until 1ADD ck > , (where A is 

positive constant). If 1RDDck ≤ , (where R is 

smaller positive constant than A), the process ends. 
But if 11 ADDRD ck ≤≤ , we have to calculate   
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(where mind  is shortest distance between kx and 

previously found cluster centers) and if it is true kx  

is selected as cluster center ckx  and process 

continues. If it is not true we set potential of kx  to 



zero and select the data point with next highest 
density to test 11 ADDRD ck ≤≤ . This phase 

continues until 1
1

min ≥+
D
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, is not true. Last step 

is to calculate sigma values for the found clusters. 
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(where X is data matrix) . Those values are needed 
with membership function parameters calculation. 
  Proper selection of rule selection parameters 
requires some trial-and-error. Major goal of this 
study is to analyse the effect of those adjustable 
clustering parameters for rule generation.  
  
2.2 Cluster estimation with least squares 
estimator and ANFIS 
Cluster estimation with a least squares estimation 
algorithm is the method introduced by Chiu [5] and 
implemented in Matlab Fuzzy Toolbox [6]. It is one-
pass method to take input-output data and generate 
first order Sugeno fuzzy inference system. We will 
later introduce Optimized subtractive clustering 
which contains this Chiu’s [5] method. ANFIS 
(Adative Neuro-Fuzzy Inference System) is a neural 
network point of view for Sugeno type fuzzy model, 
proposed by Jang [1,4]. Where the initial structure is 
done by Cluster estimation with least squares 
estimator and hybrid learning algorithm combines 
the gradient descent and least-squares estimator 
method for the optimal parameters search. 
 The difference between network structures in 
Cluster estimation with least squares estimator and 
ANFIS is in membership functions. 
 
Cluster estimation with least squares estimator: 
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ANFIS: 
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Fig.1. (a) First order Sugeno fuzzy model, (b) 
Corresponding network architecture. [3] 
 
 
2.4  Optimized clustering 
The Subtractive clustering algorithm [4,5] is difficult 
to adjust by conjectural way. This is especially true 
when some input selection method like Genetic 
Algorithm (GA) is used to reduce input dimensions. 
Compromise between time and sufficient accuracy 
led to decision where Subtractive clustering [4,5] 
parameters  ar and br  were taken to optimize, (A=0.5 

and R=0.15 were kept fixed). 
  Model was constructed by using training data 
and test RMSE error was the criterion of model 
quality. With test RMSE criterion we assumed that 
both training and test data are from same region 
which was not true in all cases (Box-Jenkins gas 
furnace data). 
 
Root Mean Squared Error: 
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, where iy  is actual 

output and iŷ  is desired output.                  (7) 

 
  In Fig. 2, is presented ar  and br   parameters 

effect for cost function with MPG data set. It is clear 
that gradient based methods will have difficulties 
with sharp edges where gradient does not exist.  
Those sharp edges particularly appears when number 
of rules changes. This fact led to decision that 
optimization should rather do by direct search 
method.  



 
Fig. 2, Cost function surface where MPG data is 
evaluated with different ar  and br  combinations.  

 
Nelder-Mead simplex algorithm [7,9], first 
published in 1965, has become one of the most used 
direct search method for nonlinear unconstrained 
minimization tasks. The presentation of algorithm 
and its convergence properties in low dimensions 
can be found from reference [7,9]. 
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Function evaluations 
 

Fig. 3,  Nelder-Mead test and training error 
convergence with Suburban Commuting data set. 
    
Table 1. Values used to create Fig.3.  
Function 
evaluations 

Training 
RMSE 

Test 
RMSE ar  br  

0 0.5276 0.6170 2 1.6 
1 0.5276 0.6170 2 1.6 
2 0.5276 0.6170 2 1.6 
3 0.5276 0.6170 2 1.6 
4 0.5142 0.554 2.2222 1.6537 
5 0.5142 0.554 2.2222 1.6537 
6 0.5142 0.554 2.2222 1.6537 
7 0.5135 0.5478 2.5 1.8181 
8 0.5135 0.5478 2.5 1.8181 
9 0.5135 0.5478 2.5 1.8181 
10 0.5135 0.5478 2.5 1.8181 
11 0.5135 0.5478 2.5 1.8181 
12 0.5147 0.546 2.6667 1.855 
.         
20 0.5152 0.5457 2.717 1.8306 

Nelder-Mead [7,9] was chosen because of its 
fast convergence in low dimensions. Although 
local minimum search is not absolutely correct 
in theoretical sense but some global minimum 
search for example GA should use. However 
those global search methods are much slower 
than this and in this case several parameter 
combinations provide near the global minimum 
solutions, which are quite easy to find.    
 When this method is used together with GA 
based input selection, the Nelder-Mead optimization 
is done with one initial value where ar  = 2 and br  = 

1.6. After the best input combination is found the 
multi-patch optimization is used from four initial 
points. 
      
 

3  Results with data sets 
 
 
3.1 Suburban Commuting 
This benchmark considers relationship between the 
number of automobile trips generated from an area 
and the area’s demographics [6]. Demographic and 
trip data are from 100 traffic analysis zones in New 
Castle County, Delaware. Five demographic factors 
are considered: population, number of dwelling 
units, vehicle ownership, median household income, 
and total employment. Hence the model has five 
input variables and one output variable. 
 We used first 75 data points as training set and 
last 25 points as test set. All inputs were used. 
 
Table 2. Results with Suburban commuting data set. 

Model 
Training 
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 0.5147 0.546 4 
Optimized subtractive 
clustering+ANFIS 
training 0.512 0.533 4 
    
Subtratctive 
Clustering+ANFIS 
training [6] 0.3407 0.5827   
  
The major improvement with this data set follows 
from effort of Optimized subtractive clustering and 
ANFIS training can achieve only little improvement 
after it.   
 
 



3.2  Automobile MPG prediction 
This benchmark considers Automobile MPG (miles 
per gallon) prediction [3] where several input 
variables are used to predict one continuous output 
variable. Input variables contains information about 
automobiles: 
 

 Multi-valued discrete 
Displacement:   Continuous 
Horsepower:   Continuous 
Weight:    Continuous 
Acceleration:   Continuous 

 Multi-valued discrete 
 
We have 392 data points, training and test sets are 
randomly selected. Both contains 196 data points. 
 
Table 3. MPG data set with inputs:  
horsepower, weight and model-year. 

Model 
Training 
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 2.5522 2.7154 4 
Optimized subtractive 
clustering+ANFIS 
training 2.5274 2.714 4 
 

With MPG data set we also tested GA based input 
selection. The best combination we found is 
horsepower, weight and model-year. This 
combination with Optimized subtractive clustering 
led to much better results than Jang [3,4] with two 
inputs. There is hardly any difference between 
Optimized subtractive clustering and ANFIS training 
results. 
 
Table 4. MPG data set with inputs: 
weight and model-year. 

Model 
Training 
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 2.6808 2.8637 6 
Optimized subtractive 
clustering+ANFIS 
training 2.6808 2.8637 6 
        
ANFIS training [3,4].   2.98   
  

With weight and model-year we could also achieve 
better results than Jang [3,4]. ANFIS training 
couldn’t improve model after Optimized subtractive 
clustering.   
    
 

3.3 Box-Jenkins gas furnace data 
This benchmark is a widely used for system 
identification [3,8].   There are originally 296 data 
points {y(t),u(t)}, from t=1…296. y(t) is the output 
CO2 concentration and u(t) is the input gas flow 
rate.  Here we are trying to predict y(t) based on 
{y(t-1)… y(t-4), u(t-1)…u(t-6)}.  This reduces the 
number of effective data points to 290. 
 Most methods find that the best set of input 
variables for predicting y(t) is {y(t-1),u(t-4)}.  
Sugeno and Yasukawa [8] has found that the best 
set of input variables for predicting y(t) is {y(t-1),      
u(t-4), u(t-3)}. We found as a best set for predicting 
y(t) is {y(t-1) y(t-2) y(t-3) u(t-2)}. 
  Training set is first 145 data points and test set 
is last 145 points. 
 
Table 5, Results with Box-Jenkins data set. 

Model 
Training
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 0.1350 0.3576 5 
Optimized subtractive  
clustering+ANFIS 
training 0.1350 0.3576 5 
 
Numerical information from Jang’s [3] results was 
not available. We found that ANFIS training 
couldn’t improve any after Optimized subtractive 
clustering. 
   
3.4  Mackey-Glass time-series 
Mackey-Glass (MG) time-delay differential 
equation [2,4] is a well known and widely used 
benchmark problem in the neural network and fuzzy 
modeling research communities.  
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 This time-series is chaotic, it will not converge 
or diverge and the trajectory is highly sensitive to 
initial conditions.  
 Fourth-order Runge-Kutta method is used to 
find numerical solution to equation (8). We assume 
x(0) = 1.2, τ �= 17 , and x(t) = 0 for t < 0. 
Inputs:{x(t–18) x(t–12) x(t–6) x(t)}. 
Output: x(t+6). 
Data from t=118…1117, first 500 data points is 
training data and last 500 test data. 
 
 



Table 6. Results with Mackey-Glass data set. 

Model 
Training 
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 0.0029 0.0034 59 
Optimized subtractive 
clustering+ANFIS 
training 0.000615 0.0011 59 
Optimized subtractive 
clustering 0.01 0.01 14 
Optimized subtractive 
clustering+ANFIS 
training 0.0014 0.0013 14 
        
ANFIS training [2] 0.0016 0.0015 16 
  

It is clear that the proposed approach with gaussian 
membership function is not ideal for a highly 
nonlinear model like this. ANFIS with gbell 
membership function has more expression power 
and better performance. This can clearly be seen 
from results in table 6. 
 This true only in noiseless situation and it is not 
so straightforward when some noise is added to 
identification data (more practical situation). See 
table 7.   
 
 

 
Fig. 4. First 200 points from Mackey-Glass data 
with zero-mean normal distributed noise (σ = 0.03). 
 
 
 
 
 
 

Table 7. Results with Mackey-Glass + zero-mean, 
normal distributed noise (σ =0.03). 

Model 
Training 
RMSE 

Test 
RMSE Rules 

Optimized subtractive 
clustering 0.0435 0.0482 10 
Optimized subtractive 
clustering+ANFIS 
training 0.0395 0.0458 10 
 
  
3.6 Prediction model 
As a generalization test of Optimized subtractive 
clustering and ANFIS training we used iteratively 90 
steps ahead predicted Mackey-Glass time-series. 
This kind of test is definitive way to check whether  
the time-series model is correctly found or not.  
Results of test can be found from Fig. 5. 
   At first we took 10 delayed values {x(t), …, x(t-
9)} from Mackey-Glass time-series as input 
candidates to predict x(t+1). First 500 data points 
were used as training set and next 600 as test set. 
Last 90 data points we wanted to predict was not 
used during the identification process and model was 
kept fixed during the prediction. As a best set of 
inputs to predict x(t+1) we found  {x(t), x(t-1), x(t-
3), x(t-8), x(t-9)}. 
 

D e s i r e d  O u t p u t  (-) P r e d i c t e d  O u t p u t  (-.-) 

 
Fig. 5. Recursively ninety steps ahead 
computed Mackey-Glass time-series.  



Models where Optimized subtractive clustering is 
used can achieve better results than ANFIS training 
after subtractive clustering with default settings. The 
main reason is number of rules which is smaller with 
default settings.      
 
 
4   Conclusion 

In this paper we have presented quick and efficient 
iterative way to construct close to optimal first-order 
Sugeno fuzzy model. By using this Optimized 
subtractive  clustering we have achieved a good 
results without ANFIS training and with it. Also the 
way it works in input selection is very promising. 
Method is tested by using nonlinear regression and 
time-series data sets. Test of generalization 
capability can be found from part where iterative 
way calculated 90 steps ahead prediction for 
Mackey-Glass time-series is done. 
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