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Abstract: - A design procedure of neural associative memories to be used for robot vision systems is
developed, which fits in the capabilities both of discrete-time cellular neural networks (DTCNNs) and
fuzzy logic. The choice of this kind of neural networks is motivated by their architecture, suitable for
storing images, and their locally connected structure, which is effective for the hardware
implementation of the designed memories. In particular, fuzzy logic has been used for mapping original
images into binary segmented ones, which can be stored into this kind of neural associative memory,
due to the fact that the discrete-time cellular neural networks hardware realization cannot agree with the
256 gray levels of natural images and with their strongly nonlinear hystograms. The necessary storage
capacity is guaranteed for the associative memory by imposing the conditions which assure the
asymptotic stability for the segmented images to be memorized. The performance of the designed
memory is then investigated by testing its error correction capability.
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1 Introduction
In the field of robotics image processing in real
time is imperative, as it usually provides the
information necessary for the execution of robot
tasks. Since a robot makes its decisions and acts
on the basis of image analysis, irrespective of any
consequence, the results of a recognition process
required from a robot must possess a greater
safety with respect to traditional pattern
recognition techniques. Furthermore, artificial
vision in automatic units needs to be pursued by
considering the extraction of information
specifically required for a robot to carry out its
job. This implies that vigorous constraints in
object matching have to be applied by means of
suitable techniques.

Taking into account the step sequence to be
followed by any robot vision system for carrying
out an object matching procedure, it can be noted
that, after detecting images by means of proper
signal sensors, these images have to be
transformed, so as to extract the relevant features.
Object matching can be obtained for automatic
units by exploiting memories properly designed

to store and compare the reference images with
the detected ones.

On the basis of these considerations, in this
paper a design procedure of discrete-time cellular
neural networks (DTCNNs) for associative
memories to be used in robot vision systems is
developed,   which   fits   in   the   capabilities
both  of cellular neural networks and fuzzy logic.

The choice of cellular neural networks [1] is
motivated by their attractive architecture, which
proves adequate for image storing [2, 3] and their
structure characterized by local connections,
which could lead to an effective hardware
implementation of the designed networks.
However, since the hardware realization cannot
agree with the 256 gray levels of natural images
and their strongly nonlinear hystograms,
difficulties arise in determining proper and
reliable image segmentations. In this paper an
attempt is made to overcome this drawback by
adopting fuzzy encoding procedures in the course
of the image segmentation [4-6] to map original
images into binary segmented ones, more easily
storable into a cellular neural network behaving



as an associative memory. The required storage
capacity of the associative memory is obtained by
imposing the conditions for assuring that each
segmented image corresponds to an
asymptotically stable equilibrium point of the
network [3]. An example concerning with the
recognition of industrial tools, handled by a robot
in an assembly line, is illustrated and the
performance of the corresponding designed
memory is evaluated by testing its error
correction capability.

2 Fuzzy encoding procedure
The proposed fuzzy technique enables to

segment original 256-level images P = [pij] into
binary segmented images F = [f ij] which can be
easily stored in a DTCNN with a two-level output
function. A proper fuzzification procedure, based
on the analysis of the hystograms of the given
images [5], is therefore developed to define two
fuzzy subsets adequate to describe their semantic
content as industrial tools to be used by a robot.
In particular, it can be observed that the domain
of gray level values between 0 and 255 is
quantized into two semi-overlapped input fuzzy
subsets (X1 = Object, X2 = Background) as:

X1 = {X1 (pij) = m(pij, X1) | 0  ≤ pij ≤ p2}
X2 = {X2 (pij) = m(pij, X2) | p1 ≤ pij ≤ p3}

with p1 ≤ p2 ≤ p3 ≤ 255. The quantities m(pij, Xk)
denote the value of the membership function for
each pixel and can range from 0 to 1. Triangular
shapes have been chosen for the fuzzy subsets.
Since the fuzzy subsets Xk are semi-overlapped
and satisfy the condition

X1(pij) + X2(pij) ≤ 1 ∀pij

they are called max-t orthogonal [5].
A fuzzy transformation from input fuzzy sets

to output fuzzy sets is established by generating
fuzzy rules to relate these fuzzy subsets to the
following output ones:

Y1 = {Y1 (fij) = 0| i, j  = 1,..., 256} Black
Y2 = {Y2 (fij) = 255| i, j  = 1,..., 256} White

In particular, the fuzzy rules which provide the
mapping from original images (input) to
segmented ones (output) can be expressed as:

IF  pij  ∈  X1 THEN f ij  ∈  Y1

IF  pij  ∈  X2 THEN f ij  ∈  Y2

where F = [fij] is the generic binary segmented
output image. As stated by Theorem 2 in [5], the
above reported fuzzy rules can be encoded in a
single fuzzy associative memory (FAM) weight
matrix by using the max-bounded-product (max-
⊗) composition as follows:

M = max k [ T
kX (pij) ⊗ Yk (f ij)] k =1, 2

All  encoded  fuzzy  rules  can  be  recalled
using max-t composition, since the input fuzzy
subsets Xk are normal and max-t orthogonal to
each other [5].

3 Synthesis of Discrete-Time CNNs
for Associative Memories

3.1 Model and stability analysis of
Discrete-Time Cellular Neural Networks

The model of an n-cell rectangular DTCNN
can be expressed in vector form as [3]:

u(k + 1) = T v(k) + I   (1a)
v(k) = g(u(k))   (1b)

where u = [u1,...,un]
T ∈ Rn  is the state vector, v =

[v1,...,vn]
T ∈ Rn  is the output vector, I = [I1,...,In]

T

∈ Rn  contains the current sources values and g =
[g,...,g]T ∈ Rn , where the function g: R → R is a
continuous, and piecewise linear output function
in the form

g(u) = (|2u + 1| – |2u + 1|)/2    (2)

The sparse matrix T = [Tij] ∈ Rn x n  is the
interconnection matrix, which takes into account
the local connection property of the cellular
neural network architecture.

Any point u0 ∈ Rn  is said to be an equilibrium
point of (1) if [1, 3]

u0 = T g(u0) + I (3)

Moreover, it can be proved that the suggested
model assures the asymptotic stability of any
equilibrium point of system (1), which is a



necessary condition to generate an associative
memory. In the proposed design, each binary
segmented image has to constitute an equilibrium
point of the DTCNN.

3.2 Synthesis of Neural Associative
Memories based on DTCNNs
The segmented images derived from the fuzzy
encoding  procedure constitute the set of
memories v i , i = 1,...,m, to be stored in the
memory, each v i  corresponds to an equilibrium
point ui  of (1) if and only if

ui= T v i+ I i = 1,..., m     (4)

where ui= [ i
n

i
2

i
1 uuu ,...,, ]T ∈ Rn  and v i=

[ i
n

i
2

i
1 vvv ,...,, ]T ∈ Rn . Equation (4) can then be

rewritten in compact form as:

U = T V  +  I' (5)

where V = [v1 ,v2 ,…,vm ] ∈ Rn x m , I' = [I ,..., I] ∈
Rn x m  and  U = [u 1 ,u 2 ,…,um ] ∈ Rn x m .

Our objective consists in determining the
matrices T and I' so that the constraint (5) is
satisfied. To this purpose, some matrices have to
be defined:

R  = [VT | J ] ∈ Rm x (n +1 )

wk = [Tk1,Tk2,...,Tkn | Ik] ∈ R1 x (n +1 )

Uk  =  [ m
k

2
k

1
k uuu ,...,, ] ∈ R1 x m  k = 1, ..., n

where J = [1, 1, ..., 1]T ∈ Rm x 1 .

Equation (5) then becomes:

R wk
T  =  Uk

T k = 1, ..., n  (6)

Equation (6) has to be solved taking into
account the constraints dictated by the DTCNN
structure in the synthesis procedure and defining a
matrix S = [Sik]∈ Rnxn as follows:
Sik = 1 if   the   k-th   cell   belongs   to   the

same r-neighbourhood  of  the  i-th  cell;
Sik = 0 otherwise  (i = 1, ..., n;  k = 1, ..., n).

Now, a matrix Rrk ∈ kmxhR can be obtained
from the matrix R by eliminating those columns

the indices of which correspond to the zero
elements in the k-th row of S. Moreover, a vector
wrk can be defined as the vector obtained from wk

by eliminating its zero elements. Thus, from (6) it
results:

Rrk wrk
T  =  Uk

T k = 1, ..., n  (7)

From (7) it follows:

wrk
T = +

rkR + Ukj
T k =1, ..., n   (8)

where +
rkR denotes the pseudo-inverse of Rrk [3].

The synthesis procedure concludes by expanding
the vector wrk

T with zero elements until the vector
wk

T is obtained.

4 Numerical example
In this example a (256x256)-cell DTCNN with

the neighbourhood reported in [1] (r = 1) is
designed to store natural images of industrial
tools, as shown in Fig.1. These images are
composed of 256x256 pixels, each pixel being
capable of assuming a gray level value between 0
and at most 255, as visualized in their hystograms
reported in Fig.2.

(a) (b)

Fig.1 – Natural images of industrial tools to be
handled by a robot

Fig.2–Hystograms of the images reported in Fig.1

In particular, it can be observed that the domain
of gray level values ranges from 0 to 161. The
gray level values used to establish the

(a) (b)



membership   function   have  been  estimated
from the original image hystograms [4] as equal
to p1 = 56,  p2 = 80,  p3 = 161. Accordingly, the
two following semi-overlapped fuzzy subsets (see
Fig. 3) are obtained:

B = {pij |  0  ≤  pij ≤ 80} Background
O = {pij | 56 ≤  pij  ≤ 161} Object
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Fig.3 – Membership functions

Fig.4 – Binary segmented images

In Fig.4 the fuzzified images have been reported.
Then, these images have been submitted to the
DTCNN to be trained as asymptotically stable
memory vectors. The DTCNN error correction
capability has been successively investigated by
submitting several noisy images to the designed
memory. In Fig.5(a) a noisy image, obtained by
adding a spatially distributed gaussian noise N(µ,
σ) with µ = 0 and σ 2 =  20, is visualized. The
DTCNN output image is recovered in fourteen
steps and is shown in Fig.5(b)-(d). It can be noted
that the image visualized in Fig.5(d) is identical
to the one reported in Fig.4. Other different noisy
images (N(0, 5) and N(0, 25)) have been
submitted to the DTCNN and, accordingly, the
recovered images have been obtained in eight and
seventeen steps, respectively. It can be observed

that the designed DTCNN is able to recover quite
satisfactorily the memorized images also when
σ2 = 25.

5 Conclusions
In this paper a synthesis procedure of neural

associative memories for artificial vision systems
based on DTCNNs has been developed via a
fuzzy encoding procedure. The fuzzy encoding
technique enables the designed network to store
natural images. A satisfying error correction
capability has been found for  the designed
memory
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Fig.5 – Evolution of a selected noisy pattern: (a) submitted noisy image;
(b) output at step 4; (c) output at step 8; (d) final output at step14.


