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Abstract: - In the field of robotics real-time image processing can provide the information necessary
for mobile robots to execute a task in indoor environment. In this paper the application of a simple
neural network-based system to translation and scale-invariant object recognition in the artificial
vision structure of a mobile robot is proposed. The suggested bio-inspired vision system is mainly
constituted by an encoder and a neural associative memory. Bipolar images constitute the input to the
neural associative memory, which performs the recognizing stage of the bio-inspired vision system.
The capability of the proposed system to detect and recognize scaled and translated targets is
investigated on suitable test situations.
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1 Introduction
The problem of recognizing objects and

detecting targets in artificial vision systems
independently of their position and size has been
extensively investigated in recent years [1, 2]. In
particular, high order neural networks have been
already used for translation, rotation and scale-
invariant object recognition [3-5]. However, most
of these methods are too computationally
expensive and cannot guarantee a real-time image
processing, which is essential in many
applications. As an example, by considering the
features of artificial vision systems for mobile
robots, the capability of real-time image
processing reveals fundamental as it can provide
the information necessary to execute a task in
indoor environments. For this purpose, in this
paper a vision architecture for object recognition
and target detection based on a Cellular Neural
Network (CNN) that achieves a satisfactory
invariance under translation and scaling is
developed. The choice of these Neural Systems
with Local Interconnections is motivated by their
well established implementability in VLSI and
high speed operation [6, 7]. In fact, due to the
local features of both Cellular Neural Networks

and image segmentation techniques [8,9], a
natural implementation of associative memories
able to guarantee an extremely fast learning and
recall is provided by these neural systems, being
suitable encoding procedures already been
adopted to map original images into binary
segmented ones, adequate for the storage into a
cellular associative memory [10, 11]. In this
paper, the cellular neural-based architecture is
described in Section II. For comprehension
purposes, in Section III the synthesis procedure
of Cellular Associative Memories developed in
[9] is summarized. In Section IV the application
of a simple cellular neural based system to
translation and scale-invariant object recognition
in the artificial vision structure of a mobile robot
is  developed. The class of object/background
gray images is dealt with. The ability of the
proposed architecture to detect and recognize
scaled and translated targets is investigated and
discussed on suitable test situations.

2 CNN-based Architecture of the
Vision System

In  this section, a bio-inspired robot vision
system has been considered, which involves a



camera, which captures images, and an image
processing neural system, constituted by an
encoder and a cellular associative memory with
the aim of making a robot recognize correctly
reference targets when moving in indoor
environments. In particular, the encoder realizes
the image thresholding of the original 256-level
images captured by the camera [11]. A discrete-
time CNN is then synthesized to behave as a
neural associative memory by storing the
reference bipolar images. Then, the images
captured by the camera when the robot moves are
segmented and compared with the reference ones
stored into the neural associative memory.
Therefore, the task of the bio-inspired cellular
memory consists in realizing the real-time
translation and scale-invariant pattern matching
by comparing segmented images and reference
memorized ones.

3 Neural Associative Memories via
Discrete-Time CNNS

Taking into account the above reported
considerations, in this section a Discrete-Time
Cellular Neural Network (DTCNN) is designed
to behave as an associative memory using the
synthesis procedure developed in [9], which is
hereby summarized for the aim of a good
comprehension. The model of an (NxN)-cell
rectangular DTCNN can be expressed in vector
form as [9]:

u(k + 1) = T v(k) + I   ( 1a)
v(k) = f(u(k))   ( 1b)

where u = [u1,...,un]
T ∈ Rn  and v = [v1,...,vn]

T ∈
Rn  are the state vector and output one,
respectively, with n= NxN, I = [I1,...,In]

T ∈ Rn

contains the current sources values and f =
[f,...,f ]T ∈ Rn , where the function  f: R → R is a
continuous, piecewise linear output function in
the form

f(u) = (|u + 1| – |u - 1|)/2    (2)

The sparse matrix T = [Tij] ∈ Rn x n  is the
interconnection matrix, which takes into account
the local connection property of the cellular
neural network architecture. Any point ui  ∈ Rn  is
said to be an equilibrium point of (1) if

ui= T v i+ I     (3)
where ui=[ i

n
i
2
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∈ Rn . It can be proved that the suggested model
assures the asymptotic stability of any
equilibrium point of system (3), which is a
necessary condition to generate an associative
memory. In particular, each of the m images,
which constitute the set of memories v i , i =
1,...,m, to be stored, has to correspond to an
equilibrium point ui  of the DTCNN. Equation (3)
can therefore be rewritten in compact form as:

U = T V  +  I'    (4)

where V = [v1 , v2 ,…, vm ] ∈ Rn x m , I' = [I ,..., I]
∈ Rn x m  and  U = [u1 , u2 ,…, um ] ∈ Rn x m

.

Our objective consists in determining the
matrices T and I' so that the constraint (4) is
satisfied.

Equation (4) can be written as:

R wk
T  =  Uk

T k = 1, ..., n   (5)

where R = [VT | J ] ∈ Rm x (n +1 ) ; wk =
[Tk1,Tk2,...,Tkn | Ik] ∈ R1 x (n +1 ) ; Uk  =[ m

k
2
k

1
k uuu ,...,, ]

∈ R1 x m , k= 1,.., ,n and J = [1, 1, ..., 1]T ∈ Rm x 1 .
Equation (5) has to be solved taking into

account the constraints dictated by the DTCNN
structure in the synthesis procedure and defining
a matrix S = [Sjk]∈ Rnxn as follows:

Sjk = 1 if   the   k-th   cell   belongs   to   the
same r-neighbourhood  of  the  j-th
cell;

Sjk = 0 otherwise  (j = 1, ..., n;  k = 1, ..., n).

Now, a reduced matrix R rk  can be obtained
from the matrix R by eliminating those columns
the indices of which correspond to the zero
elements in the k-th row of S. Moreover, a vector
w rk  can be defined as the vector obtained from
wk by eliminating its zero elements. Thus, from
(5) it results:

R rk  w rk 
T  =  Uk

T k = 1, ..., n    (6)

From (9) it follows:

wrk 
T = +

rkR  Uk
T k =1, ..., n    (7)

where +
rkR denotes the pseudo-inverse of Rrk  [9].

The synthesis procedure concludes by expanding



the vector wrk 
T with zero elements until the

vector wk
T is obtained.

4 Simulation Results
The performance of the proposed CNN-based
vision system is investigated by considering the
reference gray-level images reported in Fig.2.

In this figure two (128x128)-patterns, as seen
by the artificial vision system of a mobile robot,
are visualized. The target scene consists of an
object shaped as an arrow positioned on a
background. Since the aim of the suggested robot
vision system consists in recognizing a pattern
independently of its size and translated position
via a DTCNN architecture, a preprocessing
thresholding stage has been applied  to the
original pattern to obtain the bipolar reference
images to be memorized in the cellular
associative memories (-1=black; 1=white). These
reference images, segmented with a threshold
T=59, are shown in Fig. 2.

The cellular memory has been designed by
considering a (128x128)-cell DTCNN with the
neighbourhood reported in [9] (r = 1).

After designing the CNN-based memory, its
recovery capabilities have been tested by
considering sequences of images corresponding

to the progressively closer vision of a mobile
robot moving in an indoor environment.
Interesting results have been obtained.

As an example, in this work a sequence of 18
images, representing the target pattern of Fig.2a,
in a scaled view has been considered.

In Fig.3 four selected images of the sequence
are reported.

The recovery capabilities of the designed
architecture have been tested by assuming each
image of a scaled pattern of the sequence as a
noisy image of the corresponding stored
reference one to be submitted to the designed
memory.

Object matching results were encouraging,
since quite significant values of the recall rate
defined as:

Recall rate = Number of correct pixels  . 100
           Total amount of pixels

were achieved just after few steps.
To better illustrate the memory retrieving

capabilities, two selected noisy patterns and the
related    dynamic   evolutions  have   been
reported in Figs.4 and 5, respectively.

In Fig.4 the original pattern has been
completely recovered after 30 steps, even though
satisfactory results have been reached after 12
steps (Fig.6).

(a)    (b)
Figure 1: Gray-level (128x128)-captured images

  (a)              (b)

 (c)     (d)

Figure 3: Selected images of the sequence: image 1; (b)
image 7; (c) image 14; (d) image 18.

Figure 2: Bipolar reference images to be stored in the
cellular associative memory

(a) (b)



The reference pattern reported in Fig.5 has
been completely recovered after 61 steps.

From Fig.7 it can be noticed that significant
results can be already reached after 47 steps
(Fig.7).

Finally, several tests for translation-invariant
recognition have been carried out.

For this purpose, selected translated images of
the reference patterns have been reported in
Fig.8. Also in this case the recovery capabilities
of the system have been analyzed by assuming
each translated input image as a noisy image of
the corresponding stored reference pattern. In the
considered cases the original patterns were
recovered in about  15 steps.

Figure 5: Recovery evolution of the designed DTCNN:
(a) submitted 18-th image of the sequence;  (b) output
at step 1; (c) output at step 15; (d) output at step 30; (e)
output at step 45;  (f) output at step 58.

(a) (b)

(c)     (d)

(e)      (f)
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Figure 6:  Diagram of the recall rate vs the no. of
iterations for the recovering of image 9

   (a)                 (b)

(c)     (d)

(e)     (f)
Figure 4: Recovery evolution of the designed DTCNN:
(a) submitted 9-th image of the sequence; (b) output at
step 1; (c) output at step 10; (d) output at step 21; (e)
output at step 26; (f) final output at step 30.

Figure 7: Diagram of the recall rate vs the no. of
iterations for the recovering of image 18
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5 Conclusions
In this paper the application of a neural

network-based system with local interconnections
to translation and scale-invariant target
recognition in the artificial vision structure of a
mobile robot has been developed. The capability
of the proposed system to detect and recognize
scaled and translated targets has been
investigated on suitable test situations.
Simulation results have shown satisfactory
recovery capabilities both for scaled and
translated patterns.
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Figure 8: Translated images of the original patterns


