
Reducing state space exploration in reinforcement learning problems by rapid
identification of initial solutions and progressive improvement of them

Kary FRÄMLING

Department of Computer Science
Helsinki University of Technology
P.O. Box 5400, FIN-02015 HUT

FINLAND

Abstract: Most existing reinforcement learning methods require exhaustive state space exploration before converging towards
a problem solution. Various generalization techniques have been used to reduce the need for exhaustive exploration, but for
problems like maze route finding these techniques are not easily applicable. This paper presents an approach that makes it
possible to reduce the need for state space exploration by rapidly identifying a "usable" solution. Concepts of short- and long
term working memory then make it possible to continue exploring and find better or optimal solutions.

Key-Words: Reinforcement learning, Trajectory sampling, Temporal difference, Working memory, Maze route finding

1 Introduction
The work presented in this paper started from the idea to
develop an artificial neural net (ANN) model that would do
problem solving and learning in similar ways as humans
and animals do. The model would also correspond to some
very rough-level ideas and knowledge about how the brain
operates, i.e. activations and connections between different
areas of the brain and notions of short- and long term
working memory.
 Animal problem solving mainly seems to be based on
trial and learning. The success or failure of a trial modifies
behavior in the "right" direction after some number of trials,
where "some number" is in the range one (e.g. learning how
to turn on the radio from "power" button) to infinity (e.g.
learning how to grab things, which is a life-long adaptation
procedure).
 Such behavior is currently studied mainly in the
scientific research area called reinforcement learning (RL).
RL methods have been successfully applied to many
problems where more "conventional" methods are difficult
to use due to factors like lacking data about the
environment, which forces the neural net to explore its
environment and learn interactively. Exploring is a
procedure where the agent (see for instance [2] for a
discussion on the meaning of the term “agent”) has to take
actions without a priori knowledge about how good or bad
the action is, which may be known only much later when
the goal is reached or when the task failed.
 The RL problem used in this paper, maze route finding,
is commonly used in psychological studies of animal
learning and behavior [3]. Animals have to explore the
maze and construct an internal model of the maze in order
to reach the goal. The more maze runs the animal performs,
the quicker it goes to the goal since solutions get better
memorized.

 Maze route finding is not a very complicated problem to
solve with many existing methods as pointed out in section
2 of this paper, where the problem setup is explained.
Therefore, the ANN solution presented in section 3 is not
unique by being the first one able to solve the problem. It
does, however, solve the problem in a new way, which
needs significantly less initial exploration than existing
methods. Initial exploration runs are mainly shortened by
the SLAP (Set Lowest Action Priority) reinforcement
presented. Identified solutions may be further reinforced by
temporal difference (TD) methods [5].
 Even though TD learning can be used as an element of
the methods described in the paper, the methods presented
here do not use classical notions of value functions for
indicating how good a state or an action are for reaching the
goal. Instead notions of short term working memory and
long term working memory are used for selecting
appropriate actions at each state. Short term working
memory exists only during the problem solving, while
previous problem-solving instances are stored in long term
working memory. This memory organization gives new
possibilities to balance between exploration of a new
environment and/or new solutions on one hand, and
exploitation of existing knowledge on the other hand.

2 Problem Formulation
Sutton and Barto use a maze like the one in Fig 1 in chapter
9 of their 1998 book [7]. The discussion that follows on the
advantages and disadvantages of existing RL methods is
principally based on this book concerning symbols,
equations and method descriptions.
 An agent is positioned at the starting point inside the
maze and has to find a route to the goal point. Each maze
position corresponds to a state, where the agent selects one

action of four, i.e. going north, south, east or west, unless
some of these are not possible. Each state is uniquely
identified in a table-lookup manner.
 Initially, the agent has no prior knowledge about the
maze, so it has no idea of what action should be taken at
different states. Therefore it chooses an action randomly the
first time it comes to a previously unvisited state, without
knowing if it is a good one or not. If it was a bad one, the
agent ends up in a dead end and has to walk back and try
another direction. Coming back to a state already visited is
also a bad sign since the agent is walking around in circles.

a

b

Fig 1. Grid problem. a) Agent is shown in start position and
goal position in upper right corner. b) One of the optimal
solutions.

2.1 Symbolic methods
This maze route finding problem is easy to solve with a
classical depth-first search through an inference tree
representing all possible solutions [1]. The root of the tree is
the starting state. The root has links to all next states that
can be reached from it, which again have links to all their
next states. The inference tree can be recursively
constructed where leafs of the three are indicated by one of
three cases:
1. Goal reached.
2. Dead-end, i.e. state with no next-states.
3. Circuit detected, i.e. coming back to a

previously encountered state.
 Depth-first search can explore the tree until a solution is
found, which can be memorized. If the goal is to find the
optimal path, breadth-first search [1] or complete
exploration of the whole tree can be used.
 Depth-first and breadth-first search become unfeasible
when the search tree grows bigger due to a great number of
states or a great number of links (actions). Heuristic
approaches are often used to overcome these problems.
They make it possible to concentrate only on "interesting"
parts of the search tree by associating numerical values with
each tree node or each link in the search tree, which indicate
the "goodness" of that node or that link. Heuristic values
can be given directly, calculated or obtained by learning.
Reinforcement learning is one way of learning these values.

2.2 Reinforcement learning principles
In RL, heuristic estimates correspond to the notion of value
functions, which are either state-values (i.e. value of a state
in the search tree) or action-values (i.e. value of a

link/action in the search tree). In the maze problem, value
functions should be adjusted so that "good" actions, i.e.
those leading to the goal as quickly as possible are selected.
 One possible RL approach to the maze problem using
state values would be to randomly select actions until the
goal is reached, which forms one episode. During the
episode, a reward of –1 is given for all state transitions
except the one leading to the goal state. Then the value of a
state s ∈ S (set of possible states) for a given episode can be
defined formally as

() ,
0

1








== ∑
∞

=
++

k
tkt

k ssrEsV γπ
π (1)

where Vπ(s) is the state value that corresponds to the
expected return when starting in s and following policy π
thereafter [7]. A policy is the "rule" being used for selecting
actions, which can be random selection as assumed here or
some other rule. So, for Markov Decision Processes (MDP),
Eπ{} denotes the expected value given that the agent
follows policy π. The value of the terminal state, if any, is
always zero. γk is a discounting factor that is less than or
equal to one and determines to what degree future rewards
affect the value of state s. When the number of episodes
using random policy approaches infinity, the average state
value over all episodes converges to the actual state-value
for policy π.
 Once state values have converged to correct values,
states which are "closer" to the goal will have higher state
values than states that are further away. If the policy is then
changed to greedy exploration, i.e. always taking the action
that leads to the next state with the highest state value, then
the agent will automatically follow the optimal path.
Unfortunately, random initial exploration is too time
consuming to be useful in practical problems. The usual
way to treat this case is to use ε-greedy exploration, where
actions are selected greedily with probability (1 - ε), while
random action selection is used with probability ε. Another
version of ε-greedy exploration called softmax is sometimes
used. Softmax selects actions leading to high state values
with a higher probability than actions leading to low state
values, instead of using random action selection.
 When ε-greedy exploration and –1 reward on every state
transition is used for the grid world of Fig 1, all state values
can be initialized to 0 or small random values. During
exploration, states that have not been visited or that have
been visited less than others will have higher state values
than more frequently visited ones. Therefore ε-greedy
exploration will by definition tend to exhaustively explore
the whole state space, so initial episodes are very long.
Convergence towards correct state values also requires a
great number of episodes, so this approach is not usable for
bigger problems.

2.3 Monte-Carlo methods
Another possibility is to only give positive reward at the end
of an episode and zero reward for all intermediate
transitions. Monte-Carlo Policy Evaluation [7] is one
possibility for propagating the reward backwards through
the state history of one episode. If a reward of +1 is given
for reaching the goal, +1 is added to the "return values" of
all states appearing in the episode. The state-value of a state
is then the average return value over all episodes. Using ε-
greedy exploration, state values eventually converge to the
optimal policy, even though guaranteed convergence has
not yet been formally proved according to [7].
 For the maze problem used in this paper, generating
episodes using a random policy requires an average of 1700
steps. Even with TD methods studied in the next section,
nearly 30 episodes is required before convergence towards a
solution occurs, so for Monte-Carlo simulation the number
of episodes needed is probably over 100. This would mean
over 170 000 steps, which is very slow compared to all
other methods treated later in this paper.

2.4 Temporal difference learning and TD(λλ)
Monte-Carlo policy evaluation requires successfully
completed episodes in order to learn. Therefore it quickly
becomes too slow in order to be usable for most
applications since it might require a very big number of
episodes before starting to select better actions than using a
random policy. Solving this problem is one of the main
issues in so called bootstrapping methods, like those based
on temporal-difference (TD) learning [5]. Bootstrapping
signifies that state- or action value updates occur at every
state transition based on actual reward, but also on the
difference between the current state value and the state
value of the next state according to:

() () ()[]ttttt sVsVrsVsV −++← ++)(11 γα (2)

, which is known as the TD(0) method. The more advanced
TD(λ) algorithm, of which TD(0) is an instance, is currently
the most used bootstrapping method. TD(λ) uses a notion of
eligibility trace, which λ refers to. An eligibility trace
signifies using the state/action history of each episode for
propagating rewards backwards, just like in Monte-Carlo
methods. Associating an eligibility trace value with each
state, which is usually increased by one (accumulating
eligibility trace) every time the state is encountered during
an episode, creates the trace. λ is a trace decay parameter,
which together with γ determines how fast the eligibility
trace disappears for each state. For an accumulating
eligibility trace, a state’s eligibility trace value et(s) at time t
is calculated by:

() ()
() t

t

t

t
t ss

 ss

se

se
se

=
≠





+
=

−

−

 if

 if

11

1

γλ
γλ

 (3)

Experience has shown that TD methods generally converge

much faster to the optimal solution than do Monte-Carlo
methods [7]. Using a model of the environment that is
constructed during exploration, can further accelerate
convergence as for Dyna agents [6]. In Dyna agents, the
model memorizes which states are reached by what actions
for each state/action pair encountered, so TD learning can
be used for updating value functions both during interaction
with the environment and without interaction with the
environment.
 For the maze in Fig 1, Sutton and Barto have compared
convergence times between direct reinforcement learning
and Dyna agent learning [7]. Since both of these use
random exploration on the first run, the first episode lasted
for about 1700 steps. Direct RL needed about 30 episodes
before converging to the optimal path of 14 steps, while the
best Dyna agent found it after about five episodes.
However, both methods stay in eternal oscillation between
14 steps and 16 steps due to ε-greedy exploration that
regularly puts the agent off the optimal path.
 The main shortage of these techniques is that they have a
very long first exploration run, during which they go
through most states numerous times (54 states and 1700
steps => ~32 visits per state). For a simple maze like the
one in Fig 1 this is not a big problem, but the length of the
initial exploration run can be expected to grow
exponentially as the number of states increases. These long
exploration runs are due to the need of current methods to
first explore the whole state space in order to converge
towards an optimal solution.
 Exploration of the entire state space is impossible to use
in most practical applications reported like backgammon
[8], which has approximately 1020 states. However, many
states correspond to similar game situations, for which
similar moves are appropriate. Therefore learning results for
one state can be applied to numerous other states too if there
is a way to identify similar states based on state descriptions
instead of treating each state as a separate case.
 Many artificial neural networks are capable of such
generalization, where actions learned for one state
description are automatically applied to similar states even
though these states would never have been encountered
before. Also, in a game like backgammon, most states have
a very small or zero probability of occurring in a real game,
so they do not need to be learned.
 However, in a maze problem this approach does not
seem to be applicable since there are no general rules that
could be learned based on a general description of possible
states. There are 16 different states depending on possible
directions, but there is no generally applicable rule for what
action is appropriate for each type of state, so the problem
of excessively long initial exploration remains. The solution
proposed in this paper rapidly finds and memorizes at least
one usable solution using minimal exploration efforts and
then explores towards the optimal solution.

3 Problem Solution
One of the initial ideas of the work presented here was to
maintain a link with animal and human problem solving and
the brain. This is why the reinforcement learning methods
presented here use an artificial neural net (ANN) model
even though they could probably also be implemented in
other ways. In this "brain inspired" ANN, neurons are either
stimulus or action neurons, which seems more appropriate
than speaking about inputs and outputs of the neural net. In
the maze solving problem, each state corresponds to one
stimulus neuron and each possible action to one action
neuron.
 When the ANN agent enters a completely unknown
maze, it only has four action neurons which correspond to
the four possible actions, but it has no stimulus neurons.
Stimulus neurons are created and connected to action
neurons for every state encountered for the first time during
an episode. When a new stimulus neuron is created, the
weights of its connections to action neurons are initialized
to small random values for instance in the interval]0,1].
Since these stimuli and their connection weights are created
during one episode and exist only until the episode is
finished, they are here called short term working memory.
Once an episode is finished, both short term stimuli and
connection weights can be copied as instances in long term
working memory.

3.1 ANN architecture
The purpose of long term working memory is to be able to
solve the same problem more efficiently in the future. When
a stimulus is activated in short term working memory, we
can suppose that the corresponding stimulus instances in
long term working memory are also activated to a certain
degree. Since long term working memory instances are
connected to action neurons, they affect what action is
selected. Actions are selected according to the winner-takes-
all principle, where the action neuron with the biggest
activation value wins. Activation values of action neurons
are calculated according to:

inij

nstim

i

nltm

j

nstim

i
inin sltwsstwa *** ,,

1 1 1
,∑ ∑ ∑

= = =

+= α (4)

where an is the activation value of action neuron n, stwi,n is
the connection weight from stimulus neuron i to action
neuron n, si is the current activation value of stimulus
neuron i, ltwj,i,n is the connection weight for long term
working memory instance j and stimulus i to action neuron
n, nstim is the number of stimulus neurons and nltm is the
number of instances in long term memory. α is a weighting
parameter that adjusts to what degree stimulus activations in
short term working memory cause activation of
corresponding stimuli in long term working memory. α can
also be considered as a parameter that adjusts the influence
of past experiences on action selection. Since short term

working memory connection weights are always initialized
to random values when a state is encountered for the first
time during an episode, adjusting the α parameter offers an
alternative to ε-greedy exploration and softmax for
balancing between exploration and exploitation.
 Equation (4) can be rewritten in the form

∑ ∑ ∑
= = =

+=
nstim

i

nstim

i

nltm

j
nijiinin ltwssstwa

1 1 1
,,, α (5)

, which shows that long term working memory can be
implemented as a vector of sums of stored connection
weights, which makes it possible to implement the
proposed model in a computation- and memory efficient
way. Only two connection weight matrices are needed,
one for short term working memory weights and the
other one for long term working memory weights. The
short term working memory matrix is of size (number of
actions)*(number of states encountered during current
episode). The long term working memory matrix is of
size (number of actions)*(number of states ever
encountered). Straight matrix multiplication and addition
is enough to perform the needed calculations.

3.2 Search for "usable" initial solution
Exploration and exploitation happen simultaneously, which
one is predominant depends on the value of α and on the
number of instances in long term working memory. Long
term working memory is initially empty for a completely
unexplored maze. Therefore action selection according to
equation (4) is random the first time a new state is
encountered because the new stimulus neuron created in
short term working memory has random initial connection
weights.
 If a state already encountered during the same episode is
visited again, it is either due to coming back from a dead
end or going around in circles. In both cases it would be
unwise to take the same action as the previous time in the
same state. In order to know what action was taken the
previous time, it is sufficient to evaluate equation (4) for the
current state and see which action wins. The winning action
is punished according to the new Set Lowest Action Priority
principle, shortly SLAP. The "slapped" action is punished
by decreasing its weights enough to make it become the
least activated among possible actions the next time we are
in the same state. This is done according to the formula:

() nininni asstwaastw ,min, −−=∆ (6)

where an is the activation value of the slapped neuron and
amin is the new activation desired, obtained by taking the
lowest action activation among possible actions (possible
directions) and subtracting a small ratio of it.
 Slapping is not only used for punishing actions that lead
to dead ends and circuits, slapping is also applied to the
direction the agent comes from directly after entering a

state. Otherwise the probability that the agent would go
back in the same direction as it came from would be as high
as taking a new direction. The goal of SLAP is therefore
mainly to make the exploration go to the goal as quickly as
possible with minimal exploration effort. Sutton and Barto
[7] call this principle trajectory sampling and show for a
simple problem that this technique greatly reduces
computation time compared to exhaustive search, especially
for problems with a great number of states. For the sample
run in Fig 2, the first episode took only 104 steps and still
directly gives the rather good solution of 16 steps on the
second episode (14 is the optimal solution). This result can
be considered excellent compared to the 1700 steps reported
for TD and Dyna-Q in [7] for the first episode, not to
mention that they need up to 30 episodes before reaching a
16-step solution.
 The last actions used for each state are implicitly stored
in short term working memory weights by SLAP
reinforcements. Therefore an exploitation run that uses
these weights will directly follow the shortest path
discovered as in Fig 2b. This is also true if the agent starts
from some other state encountered during exploration than
the initial starting state as in Fig 2c.

a

b

c

Fig 2. a) First episode, 104 steps, b) second episode, 16
steps, c) different starting point than initial one, 13 steps.

 Once an episode is finished, short term working memory
weights can be copied as an instance in long term working
memory. This can either be done directly or after an
additional reinforcement has been applied. This is
implemented by doing a "replay" of all stimuli activations
(states) and rewarding the winning actions by increasing the
value of the connection weight between the stimulus and the
winning action by a final reward value. Dispatching the
final reward in this way is actually very similar to TD(λ)
with γ = 1. The main difference is that the eligibility trace is
not stored anywhere, it is reconstructed instead. Even
though no formal proof is shown here for the similarity with
TD(λ), it can still be assumed that TD(λ) methods could be
used for propagating the final reward backwards as well.
Therefore most existing experience and knowledge about
TD methods could be applicable concerning convergence,
calculation complexity etc.

3.2 Search for optimal solution
Since only a part of the state space is usually visited during
the initial exploration and only a part of the possible actions

in different states are used, the initially identified solution
has a high probability of being sub optimal. This is also the
case in Fig 2, where the optimal solution would be 14 steps.
However, the optimal solution is very difficult to find since
it has a much smaller probability of occurring during
random exploration than other solutions. At least two
possibilities exist in order to find the optimal solution:

1. Letting several neural net agents search for a solution
and see which agent found the best one.

2. Using low α and/or low final reward at the end of
episodes and letting the same agent do a great number
of exploration runs. This could also be combined with
ε-greedy and softmax exploration.

 The first possibility might seem to be rather wasteful, but
since initial exploration only requires an average of 115
steps, there can still be 15 agents exploring before reaching
the 1700 steps used by the initial run with TD(λ) in [7].
Classical TD(λ) (without model as in Dyna-Q) apparently
needs far over 10000 exploration steps before finding a path
requiring only 16 steps, but then quite rapidly finds the
optimal path with 14 steps. The experimental probability of
an agent using random policy to find the optimal path is
0.007, which means that it takes about 143 agents on the
average before the optimal path is found. Therefore an
average of 16445 (143*115) steps are needed for SLAP
agents to find the optimal solution. This number seems to be
approximately the same as for TD(λ), but the huge
advantage of SLAP agents over TD(λ) is that they find a
rather good solution already after one episode and about
115 exploration steps. Such a solution can be directly
usable, so further exploration can be deferred to when there
is spare time to do it. This also corresponds rather well to
human behavior – first find a "usable" solution and be
curious about other solutions when there is time for it.
 Table 1 shows the number of steps needed for the first
and the second episodes of ten sample SLAP agents. After
each episode, the agents received a final reward of one at
the end of the episode before storing the solution as an
instance in long term working memory. All agents had α =
1. For 30 sample agents, the longest initial episode took 336
steps and the shortest took 26 steps. The total number of
initial episode steps for the 30 agents was 3460 and the
optimal solution of 14 steps was found by one of these.
Even the worst second episode solution requiring 26 steps
could be usable in many applications.

Table 1. Exploration steps for first episode versus second
episode for ten different agents.
Run # 1 2 3 4 5 6 7 8 9 10
Episode 1 44 174 66 148 26 110 136 218 40 168
Episode 2 22 18 14 24 22 18 18 16 20 16

 The second possibility to find the optimal path is to use
the same agent all the time and let it gradually improve.

This possibility has so far only been studied for the case of
using low α values and a final reward of one. However,
only episodes that are shorter than any previous episode are
stored as instances in long term working memory, which
means that episodes tend to get shorter as the number of
episodes increases. When using α = 0.01, the path followed
became stable after an average of about 500 episodes and a
total of about 15000 steps. All agents that discovered the 14
step solution at least once (about one agent out of five)
eventually converged to that solution, while the others
converged to a solution of 16 steps. Convergence could
certainly be made much quicker in several ways. One way
would be to use adaptive final reward values, where a
reward counter would count the total amount of final
rewards given and then give a bigger final reward than this
amount for better solutions, thus slightly overriding all
previous solutions. Unfortunately, despite its simplicity, this
method has not been tested yet.
 Adjusting the values of α, the final episode reward and
the interval for random initial weights of new stimuli in
short term working memory determine the balance between
random exploration and greedy exploration. But if the
solutions found during the first episodes are too far from the
optimal solution, these parameters are not sufficient for
converging to the optimal solution. Using ε-greedy
exploration should solve this problem since it would
introduce stochastic behavior. Testing this is one of the first
issues of future research. Future research will also focus on
comparing existing RL methods and those proposed in this
paper for other mazes and for other kinds of problems. It
would be especially interesting to extend the approach to
problems requiring generalization for different states based
on state descriptions. One such problem is the minefield
navigation problem treated in [4], which is more general
than well-known cases like backgammon [8] that require a
great amount of domain knowledge. In the minefield
navigation problem there are no states, only continuous-
valued state descriptions, where the number of stimuli is
constant while the degree of activation of stimuli changes.
All calculations used in this paper are applicable to this kind
of stimuli, but they will certainly need to be further
developed in order to solve this kind of problem.

4 Conclusion
This paper presents how initial exploration runs in
reinforcement learning can be significantly shortened. This
is achieved by the SLAP reinforcement learning principle,
which makes the agent avoid coming back to states already
visited. SLAP also has the side effect of memorizing the
shortest path found during an episode in the weights of the
neural net model presented here, thus finding "usable"
solutions with minimal exploration. Since "usable"
solutions are found very quickly, it becomes feasible to let

multiple agents do simultaneous exploration and retain the
best ones. Letting these agents communicate and exchange
their information would be an interesting topic for future
research since that could further reduce exploration time.
 Notions of short- and long term memory presented offer
agents a possibility to maintain a balance between
previously found solutions and searching for even better
solutions. This gives agents a much more "human like"
behavior than do existing RL methods, i.e. first finding a
usable solution and then being curious enough to improve
the solution when there is time for it. Most current RL
methods first exhaustively explore the whole state space
several times and then converge towards an optimal
solution, which is definitely not how a human individual
finds a new way to navigate through a town, for instance.
 Methods presented here are still at an early stage of
research, so a lot of work remains before their position in
the research area of reinforcement learning can be
established. The results presented in this paper should still
give a clear indication that the methods developed give
several big advantages compared to existing methods. If
similar results are obtained for other problems and problem
domains, reinforcement learning could probably be used in
many new application areas where they are not yet feasible
due to excessive exploration times.

References:
[1] Genesereth, M.R., Nilsson, N.J., Logical Foundations of

Artificial Intelligence, Morgan Kaufmann Publishers,
1987.

[2] Jennings, N.R., Sycara, K., Woolridge, M., A Roadmap
of Agent Research and Development, Autonomous
Agents and Multi-Agent Systems, Vol. 1, No. 1, 1998,
pp. 3-38.

[3] Louie, K., Wilson, M.A., Temporally Structured Replay
of Awake Hippocampal Ensemble Activity during Rapid
Eye Movement Sleep, Neuron, Vol. 29, No. 1, 2001, pp.
145-156.

[4] Sun, R., Merrill, E., Peterson, T., From Implicit Skills to
Explicit Knowledge: A Bottom-Up Model of Skill
Learning, Cognitive Science, Vol. 25, No. 2, 2001.

[5] Sutton, R.S., Learning to predict by the method of
temporal differences, Machine Learning, Vol. 3, 1988,
pp. 9-44.

[6] Sutton, R.S., Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming, in Proceedings of the Seventh
International Conference on Machine Learning, Morgan
Kaufmann Publishers, 1990.

[7] Sutton, R.S., Barto, A.G., Reinforcement Learning, A
Bradford Book, MIT Press, Cambridge, MA, 1998.

[8] Tesauro, G.J., Temporal difference learning and TD-
Gammon, Communications of the ACM, Vol. 38, 1995,
pp. 58-68.

