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Abstract: Most existing reinforcement learning methods require exhaustive state space exploration before converging towards 
a problem solution. Various generalization techniques have been used to reduce the need for exhaustive exploration, but for 
problems like maze route finding these techniques are not easily applicable. This paper presents an approach that makes it 
possible to reduce the need for state space exploration by rapidly identifying a "usable" solution. Concepts of short- and long 
term working memory then make it possible to continue exploring and find better or optimal solutions.  
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1   Introduction 
The work presented in this paper started from the idea to 
develop an artificial neural net (ANN) model that would do 
problem solving and learning in similar ways as humans 
and animals do. The model would also correspond to some 
very rough-level ideas and knowledge about how the brain 
operates, i.e. activations and connections between different 
areas of the brain and notions of short- and long term 
working memory.  
     Animal problem solving mainly seems to be based on 
trial and learning. The success or failure of a trial modifies 
behavior in the "right" direction after some number of trials, 
where "some number" is in the range one (e.g. learning how 
to turn on the radio from "power" button) to infinity (e.g. 
learning how to grab things, which is a life-long adaptation 
procedure).  
     Such behavior is currently studied mainly in the 
scientific research area called reinforcement learning (RL). 
RL methods have been successfully applied to many 
problems where more "conventional" methods are difficult 
to use due to factors like lacking data about the 
environment, which forces the neural net to explore its 
environment and learn interactively. Exploring is a 
procedure where the agent (see for instance [2] for a 
discussion on the meaning of the term “agent”) has to take 
actions without a priori knowledge about how good or bad 
the action is, which may be known only much later when 
the goal is reached or when the task failed.  
     The RL problem used in this paper, maze route finding, 
is commonly used in psychological studies of animal 
learning and behavior [3]. Animals have to explore the 
maze and construct an internal model of the maze in order 
to reach the goal. The more maze runs the animal performs, 
the quicker it goes to the goal since solutions get better 
memorized.  

     Maze route finding is not a very complicated problem to 
solve with many existing methods as pointed out in section 
2 of this paper, where the problem setup is explained. 
Therefore, the ANN solution presented in section 3 is not 
unique by being the first one able to solve the problem. It 
does, however, solve the problem in a new way, which 
needs significantly less initial exploration than existing 
methods. Initial exploration runs are mainly shortened by 
the SLAP (Set Lowest Action Priority) reinforcement 
presented. Identified solutions may be further reinforced by 
temporal difference (TD) methods [5]. 
     Even though TD learning can be used as an element of 
the methods described in the paper, the methods presented 
here do not use classical notions of value functions for 
indicating how good a state or an action are for reaching the 
goal. Instead notions of short term working memory and 
long term working memory are used for selecting 
appropriate actions at each state. Short term working 
memory exists only during the problem solving, while 
previous problem-solving instances are stored in long term 
working memory. This memory organization gives new 
possibilities to balance between exploration of a new 
environment and/or new solutions on one hand, and 
exploitation of existing knowledge on the other hand. 
 
 

2   Problem Formulation 
Sutton and Barto use a maze like the one in Fig 1 in chapter 
9 of their 1998 book [7]. The discussion that follows on the 
advantages and disadvantages of existing RL methods is 
principally based on this book concerning symbols, 
equations and method descriptions.  
     An agent is positioned at the starting point inside the 
maze and has to find a route to the goal point. Each maze 
position corresponds to a state, where the agent selects one 



action of four, i.e. going north, south, east or west, unless 
some of these are not possible. Each state is uniquely 
identified in a table-lookup manner.  
     Initially, the agent has no prior knowledge about the 
maze, so it has no idea of what action should be taken at 
different states. Therefore it chooses an action randomly the 
first time it comes to a previously unvisited state, without 
knowing if it is a good one or not. If it was a bad one, the 
agent ends up in a dead end and has to walk back and try 
another direction. Coming back to a state already visited is 
also a bad sign since the agent is walking around in circles.  
 

 
a 
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Fig 1. Grid problem. a) Agent is shown in start position and 
goal position in upper right corner. b) One of the optimal 
solutions. 
 
 
2.1 Symbolic methods 
This maze route finding problem is easy to solve with a 
classical depth-first search through an inference tree 
representing all possible solutions [1]. The root of the tree is 
the starting state. The root has links to all next states that 
can be reached from it, which again have links to all their 
next states. The inference tree can be recursively 
constructed where leafs of the three are indicated by one of 
three cases:  
1. Goal reached. 
2. Dead-end, i.e. state with no next-states. 
3. Circuit detected, i.e. coming back to a 

previously encountered state.  
     Depth-first search can explore the tree until a solution is 
found, which can be memorized. If the goal is to find the 
optimal path, breadth-first search [1] or complete 
exploration of the whole tree can be used.  
     Depth-first and breadth-first search become unfeasible 
when the search tree grows bigger due to a great number of 
states or a great number of links (actions). Heuristic 
approaches are often used to overcome these problems. 
They make it possible to concentrate only on "interesting" 
parts of the search tree by associating numerical values with 
each tree node or each link in the search tree, which indicate 
the "goodness" of that node or that link. Heuristic values 
can be given directly, calculated or obtained by learning. 
Reinforcement learning is one way of learning these values.  
 
 
2.2 Reinforcement learning principles 
In RL, heuristic estimates correspond to the notion of  value 
functions, which are either state-values (i.e. value of a state 
in the search tree) or action-values (i.e. value of a 

link/action in the search tree). In the maze problem, value 
functions should be adjusted so that "good" actions, i.e. 
those leading to the goal as quickly as possible are selected.  
     One possible RL approach to the maze problem using 
state values would be to randomly select actions until the 
goal is reached, which forms one episode. During the 
episode, a reward of –1 is given for all state transitions 
except the one leading to the goal state. Then the value of a 
state s ∈ S (set of possible states) for a given episode can be 
defined formally as 
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where Vπ(s) is the state value that corresponds to the 
expected return when starting in s and following policy π 
thereafter [7]. A policy is the "rule" being used for selecting 
actions, which can be random selection as assumed here or 
some other rule. So, for Markov Decision Processes (MDP), 
Eπ{} denotes the expected value given that the agent 
follows policy π. The value of the terminal state, if any, is 
always zero. γk is a discounting factor that is less than or 
equal to one and determines to what degree future rewards 
affect the value of state s. When the number of episodes 
using random policy approaches infinity, the average state 
value over all episodes converges to the actual state-value 
for policy π.  
     Once state values have converged to correct values, 
states which are "closer" to the goal will have higher state 
values than states that are further away. If the policy is then 
changed to greedy exploration, i.e. always taking the action 
that leads to the next state with the highest state value, then 
the agent will automatically follow the optimal path. 
Unfortunately, random initial exploration is too time 
consuming to be useful in practical problems. The usual 
way to treat this case is to use ε-greedy exploration, where 
actions are selected greedily with probability (1 - ε), while 
random action selection is used with probability ε. Another 
version of ε-greedy exploration called softmax is sometimes 
used. Softmax selects actions leading to high state values 
with a higher probability than actions leading to low state 
values, instead of using random action selection.  
     When ε-greedy exploration and –1 reward on every state 
transition is used for the grid world of Fig 1, all state values 
can be initialized to 0 or small random values. During 
exploration, states that have not been visited or that have 
been visited less than others will have higher state values 
than more frequently visited ones. Therefore ε-greedy 
exploration will by definition tend to exhaustively explore 
the whole state space, so initial episodes are very long. 
Convergence towards correct state values also requires a 
great number of episodes, so this approach is not usable for 
bigger problems.  
 
 



2.3 Monte-Carlo methods 
Another possibility is to only give positive reward at the end 
of an episode and zero reward for all intermediate 
transitions. Monte-Carlo Policy Evaluation [7] is one 
possibility for propagating the reward backwards through 
the state history of one episode. If a reward of +1 is given 
for reaching the goal, +1 is added to the "return values" of 
all states appearing in the episode. The state-value of a state 
is then the average return value over all episodes. Using ε-
greedy exploration, state values eventually converge to the 
optimal policy, even though guaranteed convergence has 
not yet been formally proved according to [7].  
     For the maze problem used in this paper, generating 
episodes using a random policy requires an average of 1700 
steps. Even with TD methods studied in the next section, 
nearly 30 episodes is required before convergence towards a 
solution occurs, so for Monte-Carlo simulation the number 
of episodes needed is probably over 100. This would mean 
over 170 000 steps, which is very slow compared to all 
other methods treated later in this paper. 
 
 
2.4 Temporal difference learning and TD(λλ) 
Monte-Carlo policy evaluation requires successfully 
completed episodes in order to learn. Therefore it quickly 
becomes too slow in order to be usable for most 
applications since it might require a very big number of 
episodes before starting to select better actions than using a 
random policy. Solving this problem is one of the main 
issues in so called bootstrapping methods, like those based 
on temporal-difference (TD) learning [5]. Bootstrapping 
signifies that state- or action value updates occur at every 
state transition based on actual reward, but also on the 
difference between the current state value and the state 
value of the next state according to:  
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, which is known as the TD(0) method. The more advanced 
TD(λ) algorithm, of which TD(0) is an instance, is currently 
the most used bootstrapping method. TD(λ) uses a notion of 
eligibility trace, which λ refers to. An eligibility trace 
signifies using the state/action history of each episode for 
propagating rewards backwards, just like in Monte-Carlo 
methods. Associating an eligibility trace value with each 
state, which is usually increased by one (accumulating 
eligibility trace) every time the state is encountered during 
an episode, creates the trace. λ is a trace decay parameter, 
which together with γ determines how fast the eligibility 
trace disappears for each state. For an accumulating 
eligibility trace, a state’s eligibility trace value et(s) at time t 
is calculated by: 
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Experience has shown that TD methods generally converge 

much faster to the optimal solution than do Monte-Carlo 
methods [7]. Using a model of the environment that is 
constructed during exploration, can further accelerate 
convergence as for Dyna agents [6]. In Dyna agents, the 
model memorizes which states are reached by what actions 
for each state/action pair encountered, so TD learning can 
be used for updating value functions both during interaction 
with the environment and without interaction with the 
environment.  
     For the maze in Fig 1, Sutton and Barto have compared 
convergence times between direct reinforcement learning 
and Dyna agent learning [7]. Since both of these use 
random exploration on the first run, the first episode lasted 
for about 1700 steps. Direct RL needed about 30 episodes 
before converging to the optimal path of 14 steps, while the 
best Dyna agent found it after about five episodes. 
However, both methods stay in eternal oscillation between 
14 steps and 16 steps due to ε-greedy exploration that 
regularly puts the agent off the optimal path.  
     The main shortage of these techniques is that they have a 
very long first exploration run, during which they go 
through most states numerous times (54 states and 1700 
steps => ~32 visits per state). For a simple maze like the 
one in Fig 1 this is not a big problem, but the length of the 
initial exploration run can be expected to grow 
exponentially as the number of states increases. These long 
exploration runs are due to the need of current methods to 
first explore the whole state space in order to converge 
towards an optimal solution.  
     Exploration of the entire state space is impossible to use 
in most practical applications reported like backgammon 
[8], which has approximately 1020 states. However, many 
states correspond to similar game situations, for which 
similar moves are appropriate. Therefore learning results for 
one state can be applied to numerous other states too if there 
is a way to identify similar states based on state descriptions 
instead of treating each state as a separate case.  
     Many artificial neural networks are capable of such 
generalization, where actions learned for one state 
description are automatically applied to similar states even 
though these states would never have been encountered 
before. Also, in a game like backgammon, most states have 
a very small or zero probability of occurring in a real game, 
so they do not need to be learned.  
     However, in a maze problem this approach does not 
seem to be applicable since there are no general rules that 
could be learned based on a general description of possible 
states. There are 16 different states depending on possible 
directions, but there is no generally applicable rule for what 
action is appropriate for each type of state, so the problem 
of excessively long initial exploration remains. The solution 
proposed in this paper rapidly finds and memorizes at least 
one usable solution using minimal exploration efforts and 
then explores towards the optimal solution.  

 



3   Problem Solution 
One of the initial ideas of the work presented here was to 
maintain a link with animal and human problem solving and 
the brain. This is why the reinforcement learning methods 
presented here use an artificial neural net (ANN) model 
even though they could probably also be implemented in 
other ways. In this "brain inspired" ANN, neurons are either 
stimulus or action neurons, which seems more appropriate 
than speaking about inputs and outputs of the neural net. In 
the maze solving problem, each state corresponds to one 
stimulus neuron and each possible action to one action 
neuron.  
     When the ANN agent enters a completely unknown 
maze, it only has four action neurons which correspond to 
the four possible actions, but it has no stimulus neurons. 
Stimulus neurons are created and connected to action 
neurons for every state encountered for the first time during 
an episode. When a new stimulus neuron is created, the 
weights of its connections to action neurons are initialized 
to small random values for instance in the interval  ]0,1]. 
Since these stimuli and their connection weights are created 
during one episode and exist only until the episode is 
finished, they are here called short term working memory. 
Once an episode is finished, both short term stimuli and 
connection weights can be copied as instances in long term 
working memory.  
 
 
3.1 ANN architecture 
The purpose of long term working memory is to be able to 
solve the same problem more efficiently in the future. When 
a stimulus is activated in short term working memory, we 
can suppose that the corresponding stimulus instances in 
long term working memory are also activated to a certain 
degree. Since long term working memory instances are 
connected to action neurons, they affect what action is 
selected. Actions are selected according to the winner-takes-
all principle, where the action neuron with the biggest 
activation value wins. Activation values of action neurons 
are calculated according to: 
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where an is the activation value of action neuron n, stwi,n is 
the connection weight from stimulus neuron i to action 
neuron n, si is the current activation value of stimulus 
neuron i, ltwj,i,n is the connection weight for long term 
working memory instance j and stimulus i to action neuron 
n, nstim is the number of stimulus neurons and nltm is the 
number of instances in long term memory. α is a weighting 
parameter that adjusts to what degree stimulus activations in 
short term working memory cause activation of 
corresponding stimuli in long term working memory. α can 
also be considered as a parameter that adjusts the influence 
of past experiences on action selection. Since short term 

working memory connection weights are always initialized 
to random values when a state is encountered for the first 
time during an episode, adjusting the α parameter offers an 
alternative to ε-greedy exploration and softmax for 
balancing between exploration and exploitation.  
     Equation (4) can be rewritten in the form 
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, which shows that long term working memory can be 
implemented as a vector of sums of stored connection 
weights, which makes it possible to implement the 
proposed model in a computation- and memory efficient 
way. Only two connection weight matrices are needed, 
one for short term working memory weights and the 
other one for long term working memory weights.  The 
short term working memory matrix is of size (number of 
actions)*(number of states encountered during current 
episode). The long term working memory matrix is of 
size (number of actions)*(number of states ever 
encountered). Straight matrix multiplication and addition 
is enough to perform the needed calculations.  
 

 
3.2 Search for "usable" initial solution 
Exploration and exploitation happen simultaneously, which 
one is predominant depends on the value of α and on the 
number of instances in long term working memory. Long 
term working memory is initially empty for a completely 
unexplored maze. Therefore action selection according to 
equation (4) is random the first time a new state is 
encountered because the new stimulus neuron created in 
short term working memory has random initial connection 
weights.  
     If a state already encountered during the same episode is 
visited again, it is either due to coming back from a dead 
end or going around in circles. In both cases it would be 
unwise to take the same action as the previous time in the 
same state. In order to know what action was taken the 
previous time, it is sufficient to evaluate equation (4) for the 
current state and see which action wins. The winning action 
is punished according to the new Set Lowest Action Priority 
principle, shortly SLAP. The "slapped" action is punished 
by decreasing its weights enough to make it become the 
least activated among possible actions the next time we are 
in the same state. This is done according to the formula:  
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where an is the activation value of the slapped neuron and 
amin is the new activation desired, obtained by taking the 
lowest action activation among possible actions (possible 
directions) and subtracting a small ratio of it.  
     Slapping is not only used for punishing actions that lead 
to dead ends and circuits, slapping is also applied to the 
direction the agent comes from directly after entering a 



state. Otherwise the probability that the agent would go 
back in the same direction as it came from would be as high 
as taking a new direction. The goal of SLAP is therefore 
mainly to make the exploration go to the goal as quickly as 
possible with minimal exploration effort. Sutton and Barto 
[7] call this principle trajectory sampling and show for a 
simple problem that this technique greatly reduces 
computation time compared to exhaustive search, especially 
for problems with a great number of states. For the sample 
run in Fig 2, the first episode took only 104 steps and still 
directly gives the rather good solution of 16 steps on the 
second episode (14 is the optimal solution). This result can 
be considered excellent compared to the 1700 steps reported 
for TD and Dyna-Q in [7] for the first episode, not to 
mention that they need up to 30 episodes before reaching a 
16-step solution. 
     The last actions used for each state are  implicitly stored 
in short term working memory weights by SLAP 
reinforcements. Therefore an exploitation run that uses 
these weights will directly follow the shortest path 
discovered as in Fig 2b. This is also true if the agent starts 
from some other state encountered during exploration than 
the initial starting state as in Fig 2c.  
 

 
a 
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Fig 2. a) First episode, 104 steps, b) second episode, 16 
steps, c) different starting point than initial one, 13 steps.  
 
     Once an episode is finished, short term working memory 
weights can be copied as an instance in long term working 
memory. This can either be done directly or after an 
additional reinforcement has been applied. This is 
implemented by doing a "replay" of all stimuli activations 
(states) and rewarding the winning actions by increasing the 
value of the connection weight between the stimulus and the 
winning action by a final reward value. Dispatching the 
final reward in this way is actually very similar to TD(λ) 
with γ = 1. The main difference is that the eligibility trace is 
not stored anywhere, it is reconstructed instead. Even 
though no formal proof is shown here for the similarity with 
TD(λ), it can still be assumed that TD(λ) methods could be 
used for propagating the final reward backwards as well. 
Therefore most existing experience and knowledge about 
TD methods could be applicable concerning convergence, 
calculation complexity etc. 
 
 
3.2 Search for optimal solution 
Since only a part of the state space is usually visited during 
the initial exploration and only a part of the possible actions 

in different states are used, the initially identified solution 
has a high probability of being sub optimal. This is also the 
case in Fig 2, where the optimal solution would be 14 steps. 
However, the optimal solution is very difficult to find since 
it has a much smaller probability of occurring during 
random exploration than other solutions. At least two 
possibilities exist in order to find the optimal solution:  

1. Letting several neural net agents search for a solution 
and see which agent found the best one.  

2. Using low α and/or low final reward at the end of 
episodes and letting the same agent do a great number 
of exploration runs. This could also be combined with 
ε-greedy and softmax exploration.  

     The first possibility might seem to be rather wasteful, but 
since initial exploration only requires an average of 115 
steps, there can still be 15 agents exploring before reaching 
the 1700 steps used by the initial run with TD(λ) in [7]. 
Classical TD(λ) (without model as in Dyna-Q) apparently 
needs far over 10000 exploration steps before finding a path 
requiring only 16 steps, but then quite rapidly finds the 
optimal path with 14 steps. The experimental probability of 
an agent using random policy to find the optimal path is 
0.007, which means that it takes about 143 agents on the 
average before the optimal path is found. Therefore an 
average of 16445 (143*115) steps are needed for SLAP 
agents to find the optimal solution. This number seems to be 
approximately the same as for TD(λ), but the huge 
advantage of SLAP agents over TD(λ) is that they find a 
rather good solution already after one episode and about 
115 exploration steps. Such a solution can be directly 
usable, so further exploration can be deferred to when there 
is spare time to do it. This also corresponds rather well to 
human behavior – first find a "usable" solution and be 
curious about other solutions when there is time for it.  
     Table 1 shows the number of steps needed for the first 
and the second episodes of ten sample SLAP agents. After 
each episode, the agents received a final reward of one at 
the end of the episode before storing the solution as an 
instance in long term working memory. All agents had α = 
1. For 30 sample agents, the longest initial episode took 336 
steps and the shortest took 26 steps. The total number of 
initial episode steps for the 30 agents was 3460 and the 
optimal solution of 14 steps was found by one of these. 
Even the worst second episode solution requiring 26 steps 
could be usable in many applications.  
 
Table 1. Exploration steps for first episode versus second 
episode for ten different agents.  
Run # 1 2 3 4 5 6 7 8 9 10 
Episode 1 44 174 66 148 26 110 136 218 40 168 
Episode 2 22 18 14 24 22 18 18 16 20 16 

 
     The second possibility to find the optimal path is to use 
the same agent all the time and let it gradually improve. 



This possibility has so far only been studied for the case of 
using low α values and a final reward of one. However, 
only episodes that are shorter than any previous episode are 
stored as instances in long term working memory, which 
means that episodes tend to get shorter as the number of 
episodes increases. When using α = 0.01, the path followed 
became stable after an average of about 500 episodes and a 
total of about 15000 steps. All agents that discovered the 14 
step solution at least once (about one agent out of five) 
eventually converged to that solution, while the others 
converged to a solution of 16 steps. Convergence could 
certainly be made much quicker in several ways. One way 
would be to use adaptive final reward values, where a 
reward counter would count the total amount of final 
rewards given and then give a bigger final reward than this 
amount for better solutions, thus slightly overriding all 
previous solutions. Unfortunately, despite its simplicity, this 
method has not been tested yet.  
     Adjusting the values of α, the final episode reward and 
the interval for random initial weights of new stimuli in 
short term working memory determine the balance between 
random exploration and greedy exploration. But if the 
solutions found during the first episodes are too far from the 
optimal solution, these parameters are not sufficient for 
converging to the optimal solution. Using ε-greedy 
exploration should solve this problem since it would 
introduce stochastic behavior. Testing this is one of the first 
issues of future research. Future research will also focus on 
comparing existing RL methods and those proposed in this 
paper for other mazes and for other kinds of problems. It 
would be especially interesting to extend the approach to 
problems requiring generalization for different states based 
on state descriptions. One such problem is the minefield 
navigation problem treated in [4], which is more general 
than well-known cases like backgammon [8] that  require a 
great amount of domain knowledge. In the minefield 
navigation problem there are no states, only continuous-
valued state descriptions, where the number of stimuli is 
constant while the degree of activation of stimuli changes. 
All calculations used in this paper are applicable to this kind 
of stimuli, but they will certainly need to be further 
developed in order to solve this kind of problem.   
 
 

4 Conclusion 
This paper presents how initial exploration runs in 
reinforcement learning can be significantly shortened. This 
is achieved by the SLAP reinforcement learning principle, 
which makes the agent avoid coming back to states already 
visited. SLAP also has the side effect of memorizing the 
shortest path found during an episode in the weights of the 
neural net model presented here, thus finding "usable" 
solutions with minimal exploration. Since "usable" 
solutions are found very quickly, it becomes feasible to let 

multiple agents do simultaneous exploration and retain the 
best ones. Letting these agents communicate and exchange 
their information would be an interesting topic for future 
research since that could further reduce exploration time.  
     Notions of short- and long term memory presented offer 
agents a possibility to maintain a balance between 
previously found solutions and searching for even better 
solutions. This gives agents a much more "human like" 
behavior than do existing RL methods, i.e. first finding a 
usable solution and then being curious enough to improve 
the solution when there is time for it. Most current RL 
methods first exhaustively explore the whole state space 
several times and then converge towards an optimal 
solution, which is definitely not how a human individual 
finds a new way to navigate through a town, for instance.  
     Methods presented here are still at an early stage of 
research, so a lot of work remains before their position in 
the research area of reinforcement learning can be 
established. The results presented in this paper should still 
give a clear indication that the methods developed give 
several big advantages compared to existing methods. If 
similar results are obtained for other problems and problem 
domains, reinforcement learning could probably be used in 
many  new application areas where they are not yet feasible 
due to excessive exploration times.  
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