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Abstract: Self-organizing networks have been generally considered as topology preserving of an input space. 
However, following recent definitions of topology preservation, not every self-organizing model has this quality. 
In this work, we study the topology preservation capability of four different self-organizing models: Self-
Organizing Maps, Growing Cell Structures, Neural Gas and Growing Neural Gas. We use the topographic 
product to determine if these networks preserve the topological features of several bidimensional objects. We 
conclude that neuronal gases obtain better results since they can modify the topology of the network during the 
learning phase. Also, within these, the Growing Neural Gas has a smaller complexity than the Neural Gas, 
reason why it is candidate to be used in the representation of 2D objects. In future works, we will employ this 
network to represent 2D objects and to extract geometrical features. 
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1  Introduction 
Researchers have usually considered self-organizing 
networks as topology preserving models, since it has 
been thought that as consequence of the competitive 
learning similar patterns are mapped onto adjacent 
neurons and, vice versa, neighboring neurons activate 
or code similar patterns. In fact, in many cases they 
are also named as topology preserving feature maps. 
     However, this is not true in a great number of 
cases. Martinetz y Schulten [1] have formally defined 
what is a Topology Representing Networks and its 
relationship with computational geometry structures 
as the Voronoi Diagram and the Delaunay 
Triangulation. So that, several models are outside this 
category, for instance, Self-Organizing Maps (SOM). 
     This is the basic problem that the diverse attempts 
to characterize the geometry of bidimensional objects 
by means of a self-organizing network [2] have 
presented. Because they basically use the SOM 
model, they have only obtained good results when the 
object has a similar structure to the predefined 
network topology, which limits considerably its 
performance.  
     In this paper, we study the topology preservation 
capability of several self-organizing models, when 
having as input the bidimensional shape of an object. 
Then, we will obtain the self-organizing networks 
that perform the best representation of an object in 
order to extract geometrical features from it. 
 

 

2  Measuring topology preservation 
Different measures [3][4][5][6][7] have been 
developed to quantify the degree of topology 
preservation of an input space by a self-organizing 
network. Between all of them, we have applied the 
topographic product [8], which is the one that has 
been more widely used [9][10][11]. 
 
 
2.1  Topographic product 
The main idea of this measure is to compare the 
neighbourhood relation between two neurons with 
respect to its position in the map on the one hand 
( ( )k,jQ 2 ) and according to its reference vectors on 
the other ( ( )k,jQ 1 ): 
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where j  is a neuron, jw  is its reference vector, V
Kn  

is the k th closest neighbour to j  in the input space 
V  following a distance Vd  and A

Kn  is the k th 
closest neighbour to j  in the network A  according 
to a distance Ad . 



     Combining (1) and (2) we obtain a measure of the 
topological relationship between neurons j  and its 
k  closest neigbours: 
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     To extend this measure to every neuron in the 
network and all the possible neighbourhood orders 
and, since we are only interested in obtaining 
deviations of this measure from 1, the topographic 
product P  is defined as 

( )( )∑ ∑
=

−

=−
=

N

j

N

k

k,jPlog
)N(N

P
1

1

1
31

1
 (4) 

 
 
3  Comparative study of the topology 
preservation of different self-
organizing models 
In order to study the topology preservation capability 
of diverse self-organizing models, we have chosen 
networks with different characteristics, according to 
its dimensionality (fixed or variable) and the number 
of units during the learning process (fixed or 
variable) (Table 1).  
 
 
 

  Number of units 
  Fixed Variable 

Fixed 
Self-Organizing 

Maps (SOM) 
Growing Cell 

Structures (GCS) 
Dimens. 

Variable 
Neural Gas 

(NG) 
Growing Neural 

Gas (GNG) 

Table 1. Self-organizing networks studied 

 
     We have performed the learning of diverse input 
manifolds (Fig. 1) by the four different self-
organizing models, choosing for each one of them 
typical parameters applied in the literature. 
     Learning of the Self-Organizing Map (SOM) has 
been performed following the algorithm in [12], with 
parameters 100=N , 10000100 ⋅=maxt , 5=iσ , 

1=fσ , 80.i =α , 10.f =α . 
     The Growing Cell Structures (GCS) developed by 
Fritzke [13] employs parameters 100=N , 10.b =ε , 

010.n =ε , 0=α , 10000=λ , 0=η . 

Fig. 1. Input manifolds (bidimensional objects) 

Fig. 2. Final adaptation of the different self-organizing models 

Fig. 3. Distance in the input space 



     Following [14], the Neural Gas (NG) with 
competitive Hebbian learning makes use of 
parameters 100=N , 10000100 ⋅=maxt , 100=iλ , 

010.f =λ , 50.i =ε , 0050.f =ε , 0050.f =ε , 
200=fT . 

     Growing Neural Gas (GNG) [15] is adapted with 
parameters 100=N , 10000=λ , 101 .=ε , 

0102 .=ε , 0=α , 0=β . 
     We have performed five learning processes for 
each one of the possible cases (four models and four 
input manifolds). As Fig. 2 shows, the quality of the 
adaptation of the different networks to the manifolds 
varies significantly.  Once made this learning, we 
calculate the topographic product, in order to measure 
the topology preservation in each one of the cases. 
     Unlike the normal use that topographic product 
has in the literature where the distance in the input 
space Vd  is the Euclidean distance between neurons, 
we define this distance measure as the length of the 
shortest path between those neurons within the 
manifold (Fig. 3). If there is not a path between them, 

∞=Vd . 
     In Fig. 4 we show the average results for the 
topographic product and the quantization error for 
each one of the instances. As we have previously 
supposed, SOM are not good topology preserving 
networks, even in same cases it is not possible to 
calculate the topographic product because some 
neuron lies outside the manifold. Both neural gases, 
NG and GNG, that adapt its topology during the 
learning phase, are the ones that obtain the best 
results. Only in those cases where the input manifold 
has a similar shape to the topology of the fixed 
dimensionality networks, its topographic product is 
comparable to the other models. This is because 
topographic product only considers the network 
topology without taking into account the input 
manifold, since it is considered that a correct learning 
of the input space has been performed. However, this 
is not real, since SOM characterize worse the input 
space, obtaining a greater quantization error (Fig. 4), 
calculated as: 
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4  GNG vs. NG 
Neural Gas and Growing Neural Gas have a similar 
behaviour with the different input manifolds. 
However, learning complexity of the NG is much 
greater than the one of the GNG, due to the ordering 
process of all the reference vectors for each one of 
the input patterns ξ , obtaining very superior learning 
times (Table 2).  
 

Self-organizing 
model 

Learning time (in 
seconds) 

SOM 135 
GCS 29 
NG 535 

GNG 32 

Table 2. Learning times. 

     Due to the decaying parameters of the NG, if its 
learning were interrupted in the same time that GNG 
ends its learning (32 seconds), the adaptation process 
would not have finished (Fig. 5). So, the results of the 
topographic product would be quite worse, even 
undetermined. This question is very important if we 

Fig. 4. Topographic product and quantization error for the different manifolds and self-organizing models 

Fig. 5.  Incomplete learning of the NG 



want to apply the results of this work to a real-time 
system, when the learning process could be 
interrupted by a temporal event. 
     However, if the system knows the deadline in 
advance it can modify the parameters of the NG, for 
instance the number of input patterns λ , to finish in 
time. In our study, if the NG ends in those 32 seconds, 
the topographic product is very close to the one 
achieved with the GNG (Fig. 6). 
 

 

Fig. 6. Comparing topographic product of NG and 
GNG with same deadline. 

 
 

5  Conclusion 
In this paper we have presented a study of the 
topology preserving capabilities of four different self-
organizing networks. Between several measures, we 
have chosen topographic product that gives a good 
idea of the correctness of the adaptation process 
performed. We show that networks with a variable 
topology, NG and GNG, adapt better to any one of 
the input manifolds than networks with a pre-
established topology, SOM and GCS. Neural gases 
do not have the same behaviour when applying them 
to real-time systems, because NG has a greater 
complexity than GNG. 
    This work will lead us to obtain good 
representations of bidimensional objects, in order to 
characterize them in later classification o recognition 
processes. This is a new application of self-
organizing neural networks, because they are usually 
used as classifiers not as features. 
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