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Abstract: - Blind source separation (BSS) consists in processing a set of observed mixed signals to

separate them into a set of unobserved components. Various approaches have been employed to solve

BSS problems assuming that the source signals are mutually uncorrelated (or orthogonal). However, in

many real-life problems, signal orthogonality is not guaranteed.

This paper presents a new approach to BSS that can be applied to positive and partially correlated

signals. The BSS problem is transformed into a combinatorial optimisation problem and solved by

means of a Genetic Algorithm (GA). An algorithm implementing the approach has been proposed and

successfully applied to an actual example from Nuclear Magnetic Resonance (NMR) spectroscopy.
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1 Introduction

Blind source separation (BSS) consists in retriev-

ing n unknown source signals from m of their lin-

ear mixtures, despite the lack of information about

the mixing process. Standard BSS problems may

be de�ned by the following equation:

X = A:S +N (1)

where X is an m � p matrix representing the de-

tected signals, A is an m�n mixing matrix whose

elements are the unknown mixing coe�cients, S is

an n� p matrix representing the unknown source

signals, and N is the sensor noise. The mixtures,

sources and noise are de�ned as sampled func-

tions of an acquisition variable that may be time,

frequency, position, wave numbers,... depending

on the nature of the physical process under in-

vestigation. A full identi�cation of A and S is

impossible because the sources can be permuted

and scaled, provided that the column of A are

transformed accordingly. If P is a permutation

matrix and � an invertible diagonal matrix then

A:S = (AP�):(��1P�1S). The matrices S and

��1P�1S are said to be equivalent in the sense of

BSS.

There has been considerable interest in solv-

ing BSS problems because they occur in several

areas such as speech recognition, data communi-

cation, medical science and analytical chemistry

[1, 2, 8, 9]. The existing methods for solving BSS

problems assume that the source signals are statis-

tically independent. This primary constraint im-

poses source orthogonality. Consequently, these

methods are not appropriate for non-orthogonal

signals.

This paper presents a new approach to blind

source separation that can be applied to positive
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and partially correlated signals. The BSS prob-

lem is transformed into a combinatorial optimisa-

tion problem and solved by means of a procedure

based on a genetic algorithm (GA). The use of

GA to solve BSS problem has been made possi-

ble by introducing a new optimisation criterion:

the Normal Gram Determinant, which is used to

determining the coe�cients of the mixing process.

The paper is organised as follows. Section 2

is devoted to the theoretical basis of the method.

In section 3, the BSS problem is encoded in the

terms of GAs. We then provide in section 4 the

proposed BSS algorithm. Section 5 describes the

experiment and an application of the method to

an actual example from Nuclear Magnetic Reso-

nance (NMR) spectroscopy. Section 6 is a brief

conclusion. The following notations will be used

throughout the paper. The notation Ai (resp. A
j)

will be used to designate the ith row (resp. the jth

column) of matrix A. An (i; j) entry of a matrix

A will be denoted by aij .

2 The method

In order to establish the theoretical basis of the

method we will consider the noiseless case:

X = A:S (2)

It will be assumed without loss of generality that

data are given in spectral form. It follows that

each column index in S and X corresponds to a

frequency value and each row contains data inher-

ent to a particular spectrum. It is also assumed

that the number of linearly independent mixtures

is greater of equal to the number of sources and

that the rank of the mixing matrix is equal to n,

i.e. �(A) = n.

In other respects, many physical analysis provide

nonnegative signals. The signals we are concerned

with, (NMR spectral signals), belongs to this cat-

egory of signals. Furthermore, due to their phys-

ical origin, the mixing coe�cients involved in the

NMR experiment are nonnegative. The source or-

thogonality requirement is therefore replaced by

the positivity constraint on A and S and by the

following assumption: For each source, there is

at least one value of the acquisition variable for

which this source presents a non-null response, to

the exclusion of all other sources. Such sources

are said to be partially uncorrelated (or partially

orthogonal). More formally, the source matrix S

is assumed to satisfy the following condition:

Assumption 1 for each i 2 f1; 2; : : : ; ng there

exists an ji 2 f1; 2; : : : ; pg such that siji > 0 and

skji = 0; (k = 1; : : : ; i� 1; i+ 1; : : : ; n).

Clearly, this assumption does not require orthog-

onal source signals. Indeed, orthogonality is re-

quired only for the indices ji; (i = 1; : : : ; n).

An other way to write Eq. 2 is the following:

Xj =
nX

k=1

skjA
k ; (j = 1; : : : ; p) (3)

For the particular subscripts ji; (i = 1; : : : ; n) de-

scribed in assumption 1, Eq. 3 becomes

Xji = sijiA
i; (i = 1; : : : ; n) (4)

since by assumption 1, skji is nonzero only if k =

i. Equation 4 means that every column of A is

collinear to at least one column of X (column

Xji). Let Â be the submatrix of X consisting

of n columns each of which is collinear to a par-

ticular column of A, (i.e., the columns of X with

superscripts ji; i = 1; : : : ; n). Then, by Eq. 4, we

have Â = AP�, where P is a n � n permutation

matrix and � is an n�n diagonal real nonnegative

matrix. It follows from Eq. 2 that:

��1P�1S = Â#X

where the symbol # denotes the Moore-Penrose

pseudo-inverse 1. For short, ��1P�1S will be de-

noted by Ŝ. Â#X represents an acceptable solu-

tion to the separation problem since the intensity

of the source signals as well as their arrangement

in S are not relevant. Since X is known, in order

to identify Ŝ, we have to determine Â which is a

m� n submatrix of X . A generate and test algo-

rithm for determining Â must consider the di�er-

ent submatrices of X , until a submatrix such that

Â#X is nonnegative is found. Such an algorithm

1
A
# = (A:At)�1:At
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has two drawbacks. On the one hand, comput-

ing the matrix product Â#X is time consuming

because the number of columns in X , (which is

equal to the number of frequency values), is often

too large. On the other hand, the number of sub-

matrices to be tested may reach
�p
n

�
, since we have

to consider all di�erent combinations of n columns

among the p columns of X .

To avoid computing the product Â#X , we remind

the following de�nition �rst: the Gram determi-

nant of a rectangular matrixM is de�ned byG(M)

= det(tM:M). In the following, the notation M

will designate the matrix obtained fromM by mul-

tiplying each columnM j by kM jk�1. The expres-

sion G(M) will designate G(M) and will be called

the Normal Gram Determinant of M .

To determine Â, we state the following propo-

sition 2.

Proposition 2 Let Z 2Mm;p(IR
+) and Y 2

Mn;p(IR
+) such that n � m. Then, if there exists

a m� n submatrix B of Z such that Z = BY and

�(B) = n then, for any m� n submatrix B0 of Z,

we have G(B0) � G(B), with equality if and only

if B0 = BP�, where P is a permutation and � is

diagonal.

Proposition 2 may be applied in the context of BSS

since the conditions which hangs over the matri-

ces Z;B and Y are satis�ed by X; Â and Ŝ re-

spectively. Indeed, X; Â and Ŝ are nonnegative,

they satisfy X = ÂŜ and Â is a submatrix of X .

By proposition 2, Â is necessary one of the sub-

matrices of X that have a maximal Normal Gram

Determinant value. This latter may therefore be

viewed as a criterion to identify Â.

To overcome the second weak point picked out

above, we propose to use a GA-based search so as

to consider only the promising submatrices of X ,

i.e. those that own the highest G(Â) values.

3 Applying GA to BSS

The genetic algorithm (GA) is a stochastic opti-

misation algorithm that was originally motivated

2The proof of proposition 2 cannot be included in this

short paper.

by the mechanism of natural selection [3, 7]. Ba-

sically, a GA is a search procedure inspired by the

survival of the �ttest principle of natural evolu-

tion. The main elements of a population of indi-

viduals are represented by feature-encoding chro-

mosomes. The chromosomes are composed of genes.

In general, the GA acts on a population of indi-

viduals using three generic operators: selection,

crossover and mutation. The process of selection

copies chromosomes from one generation to the

next, based on their �tness value. Crossover crosses

pairs of randomly selected chromosomes in order

to produce new o�springs. The reproduced chro-

mosomes (children) contain materials from both

of the original pairs (parents). Mutation acts on a

simple chromosome by randomly changing some

genes. During the evolution process, selection,

crossover and mutation are repeatedly applied un-

til a convergence criterion is met.

To apply a GA-based algorithm to BSS prob-

lem, we must consider the following points:

3.1 Encoding and �tness function

The GA-tool is devoted to achieving the main task

of the separation process: determining Â. To this

end, an individual must encode in some way an

m � n matrix. If we take into account the fact

that Â is composed of n columns taken among

the p columns X , then Â may be fully identi�ed

by the n indices of its columns in X . Thus, an

individual may be encoded by a vector consisting

of n integers ranging in f1; : : : ; pg.

As it is suggested by proposition 2, the Nor-

mal Gram Determinant provides a mean to iden-

tify a submatrix Â of X such that Â = AP�.

The Normal Gram Determinant G(Â) is therefore

used as the �tness function. From the practical

point of view, the computation of G(Â) is not time

consuming when compared to the computation of

A#X because m;n� p.

3.2 The initial population

Initialisation of a population to provide the ge-

netic algorithm a starting point is usually done

by generating random strings from the encoding

alphabet. Nonetheless, for the problem treated
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herein, individuals involving more that one time a

same column ofX have zero �tness value, since the

encoded matrix is singular in this case. In order

to avoid such individuals, the initial population is

generated as follows:

xi = [i%p; (i+ 1)%p; : : : ; (i+ n� 1)%p];

(i = 0; : : : ; p� 1)

This population is composed of p individuals.

In each individual, a same column cannot appear

more than once since the integers i%p; : : : ; (i +

n � 1)%p are all di�erent when 1 < n � p, (the

symbol % denotes the modulo operator). Note

that each column appears exactly n times in the

whole population. Thus, at the beginning, all the

columns of X are given the same chance to be

present in the �nal solution.

3.3 Selection

The ranking selection scheme is used as the selec-

tion mechanism. Ranking methods assign a prob-

ability pi to each individual i based on its �tness

value. The probability pi is de�ned as follows:

pi =
q(1� q)r�1

1� (1� q)p

where:

q = the probability of selecting the best

individual (this parameter is equal to 0.08)

r = the rank of the individual, where 1 is the

best rank

p = the population size

A series of random numbers is generated and

compared against the cumulative probability, Ci =Pi
k=1 pk. An individual i is selected and copied

into the new population if Ci�1 < m < Ci, where

m is a random number in the range [0; 1]. The

algorithm selects individuals in this manner until

the entire population of next generation has been

produced. The number of individuals surviving

to selection remains constant, but in counterpart,

the number of trials for the �ttest chromosomes

increases to the detriment of the number of trials

for the less adapted chromosomes.

3.4 Crossover

Crossover operator takes two individuals which ha-

ve survived to selection and produces two new in-

dividuals. We use one-point crossover mechanism.

In one-point crossover, a crossover point is ran-

domly selected. The portions of the two chro-

mosomes beyond this cut-o� point to the right

are to be exchanged to form the new individu-

als. Precautions must be taken prior to applying

crossover operator, because crossover may yield

children that have zero �tness values, even though

the �tness values of the parents are high. Indeed,

a crossover involving parents that do not have du-

plicated columns may produce children with dupli-

cated columns. To prevent this occurs, we proceed

to a simple gene rearrangement before crossover in

such a way that if a column is present in both of

the parents which are going to reproduce then the

position of this column should be the same. By so

doing, we avoid children with duplicated columns.

3.5 Mutation

Mutation takes place immediately after crossover.

The random alteration of genes during mutation

may generate an individual with duplicated col-

umn. Therefore, the selected column for mutation

must not be replaced by an column which is al-

ready present in the chromosome. A random inte-

ger in the range f1; 2; : : : ; pg is repeatedly picked-

up until getting an integer which is not already

present in the chromosome. By so doing one is

sure not to introduce a duplicated column during

mutation.

4 The algorithm

The proposed algorithm for solving BSS problems

is the following:

Algorithm 3 EvolBss(X)

1. discard from X the columns Xj such that

kXjk � �. Note �X the resulting matrix.

2. form matrix X̂ consisting of all the mutually

non-collinear columns of �X.
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3. n = �(X̂)

4. apply algorithm Ga(n,X̂) and get the best

individual Â.

5. replace each column in Â by the average of

all columns in �X that are collinear to it.

Note �A the resulting matrix.

6. compute the Moore-Penrose pseudo-inverse
�A# of �A and then the estimate of S: �S =
�A#:X

Although theoretically not compulsory, steps 1 and

2 are of great interest. Indeed, during these two

steps, many columns of the input matrix X are

discarded leading to a signi�cant reduction of the

search space. More precisely, step 1 aims to dis-

carding from X the columns consisting of low-

valued entries due to noise from X . The con-

stant � is a tolerance computed as the product of

the standard deviation � of the noise by an arbi-

trary coe�cient k1. In Step 2, we exploit the fact

that a submatrix containing collinear columns has

a zero �tness value. Then collinear columns are

discarded in such a way as to keep as few collinear

column as possible. Two column vectors are as-

sumed to be collinear if their angle � does not ex-

ceed a tolerance computed as the product of an

other arbitrary constant k2 by the standard devi-

ation �(�) of the angles. The number of sources n

is, in practice, determined by computing the rank

of X̂ (see step 3). In step 4, Â is computed through

the use of the genetic algorithm described in sec-

tion 3. We used a population consisting of p̂ in-

dividuals, where p̂ is the number of columns in X̂

(see algorithm 3). We used a adapted version of

the GA implementation described in [4]. A possi-

ble way of reducing the inuence of noise present

in Â is to replace each column by the average of

the columns of �X that are collinear to it. This is

done in step 5. An improvement is expected be-

cause the noise samples are uncorrelated. Finally,

an estimate of the source matrix S is computed as
�S = �A#X (see step 6).

5 Experiment and results

NMR is a physical phenomenon that exploits the

magnetic properties of atomic nuclei. It has found

many applications in the �elds of chemistry and

medical diagnosis. The NMR spectrum of a mix-

ture is ideally the linear combination of the spec-

tra of the mixture components, designated by Mi.

With only a single mixture available, the separa-

tion of the component spectra requires a way of

modulating their intensity in a speci�c manner.

This goal is achieved by the "Pulsed Gradient Spin

Echo" (PGSE) method [10].

The mixing coe�cients aji are all positive and

represent the scaling factor of the signals from

molecules Mi when submitted to gradient Gj . The

spectra of the individual compounds that de�ne

the matrix S are also positive valued functions.

The linear mixing model described by equation 1

is valid because all the data processing steps that

produce the mixed spectra involve linear opera-

tions. This means that the spectrum of a mix-

ture of systems is truly a linear combination of the

spectra of the individual systems. Assumption 1

is met in most practical situations because there

is very little chance that a compound does not

display at least one characteristic spectral signal.

Thus, the signals provided by the NMR PGSE ex-

periment present adequate properties for their sep-

aration by the EvolBss algorithm, as described

in section 4.

As an example, we consider a sample of a mix-

ture containing two sugars: mannitol and beta-

cyclodextrine at a concentration of 20 mmol/L and

some partially deuteriated water HOD. The three

spectra of �gure 1a, b, c are obtained with gradient

strength of 2.5, 15 and 25 G/cm. The spectra of

pure mannitol, pure beta-cyclodextrine and deu-

teriated water are depicted in �gure 1d, e, f. For

the purposes of comparison, we also applied the

Fixed Point algorithm [5]. The spectra of �gures

2 are those computed by the EvolBss algorithm

(a, b, c) and those obtained by the Fixed Point al-

gorithm (d, e, f). The separation process took less

that 1 minute by both of the two algorithms. The

spectra obtained by the EvolBss algorithm are

more akin to the source spectra (�gure 1d, e, f).
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The di�erence between the responses of the two al-

gorithms can be observed notably in the frequency

zone comprised between 2000 and 2500.

This result can be strengthened by means of

the matrix distance de�ned in [2]. Let A and A0 be

two invertible matrices. The distance between A

and A0, �(A;A0) is built on the matrix D = A�1A0

as:

�(A;A0) =
X

i

j
X

j

jdijj � 1j2 +

X

j

j
X

i

jdijj � 1j2 +

X

i

j
X

j

jdijj
2
� 1j+

X

j

j
X

i

jdijj
2
� 1j

Comon proved that a value of �(A;A0) close to zero

means that A and A0 are nearly equivalent in the

sense of BSS, i.e., A0 � AP�. Let Aeb and Afp

be the mixing matrices, obtained by the EvolBss

algorithm and Fixed Point algorithm respectively,

and let A be the e�ective mixing matrix of the

BSS problem instance described above. The values

�(A;Afp) and �(A;Aeb) are equal to 0:7718 and

0:3958 respectively. This means that Aeb is closer

to the mixing matrix A than Afp.

6 Conclusion

This paper presented a new blind source separa-

tion methods that can be applied to positive and

partially correlated signals. The strong orthogo-

nality constraint imposed by the existing methods

is replaced by a weaker assumption that requires

only partial orthogonality. Based on this assump-

tion, the BSS problem is transformed into an op-

timisation problem which is solved by means of a

genetic algorithm. An algorithm implementing the

method is proposed and successfully applied to an

actual example from NMR spectroscopy. Future

work should include the application of the BSS

method presented herein to image analysis as it is

the case in [6].
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Fig. 1: Signals observed by submitting a sample containing a mixture of deuteriated water, mannitol,

and beta-cyclodextrine to three gradient strength. (a-b-c), and e�ective source signals: Spectrum of

deuteriated water, pure mannitol, and pure beta-cyclodextrine. (d-e-f)
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Fig. 2: Source signals computed by the EvolBss algorithm (a, b, c). Source signals computed by the

Fixed Point algorithm (d, e, f).
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