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Abstract: - We propose automatic modularization method for artificial neural networks. Adaptive critic approach
is used for structure optimization of the network during the learning, where modular structure is defined to be
optimal. The idea is to start with plain unstructured topology of the network and to finish learning with modular
neural network. This approach not only learns to map inputs to outputs, but it also tries to discover structure of

knowledge represented by training patterns.
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1 Introduction

Structured, or modular, neural networks (ANNSs) are
common type of ANNSs, however structure of these
networks is usually fixed. Various methods exist for
optimization of structure (topology) for unstructured
(or plain) neural networks, this include pruning al-
gorithms and GA (genetic algorithm) evolved neural
networks with optimization of topology. However,
these algorithms do not produce modular or hierar-
chical structure of network, they only reduce every-
to-every connection scheme to more sparse network
topology.

Structured neural networks are usually of NARA[1]
type or “Mixture of Experts”[2] type. Both these types
of ANN structures have similar topology. This topol-
ogy consist of several parallel modules specialized
for particular subtasks of whole task and single an-
tecedent module. This antecedent module control par-
ticipation of particular modules on final output of the
network according to position of actual input in input
space. Described modular structure is easy to follow
for humans and allows understanding of functionality
of such a ANN or embedding of apriori knowledge
into such a network. This type of structure is even
used for rough modeling of brain functionality, where
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several areas of cortex are responsible for several dif-
ferent tasks.

Proposed method is inspired by NARA modular
structure of network. Automatic building-up of this
structure is treated as optimization task. Therefore,
optimization criteria is defined for the modular-
ization and adaptive critic method is used for this
optimization. Note that other optimization methods
can be used here as well (for instance evolutionary
computation).

2 Automatic Modularization

Classical modular networks (of the NARA type) con-
sist of several independent modules, where nodes in
one module are not connected to nodes in other mod-
ules. In the plain ANN with every-to-every connec-
tion scheme every node depends on all the others (or
an all nodes in previous layer).

In process of evolving modular network from plain
network, it is logical to go through interim state,
where nodes inside particular module are connected
tightly and nodes from two different modules depend
only a little bit.

Let define the dependency of two nodes to be corre-
sponding to strength of the connection between them.
This connection can be direct or indirect using inter-
mediate nodes. In simplified case, two nodes with



small weight on direct connection are less dependent
as those with high weight on this connection. Us-
ing this assumption, module is a group of nodes with
big weights on connections inside module (intramod-
ule connections) and small weights on connections
to other modules (intermodule connections). Given
definition of “soft module” is illustrated on figure 1
by “structured plain” structure (dotted lines represent
links with small weights).
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Fig.1: Types of ANN modularity.

To discover modular structure of ANN two basic
approaches can be used:

passive: after learning of the network, analysis is
done to find modular structure,
active: during learning, modularization algo-
rithm is run and modular structure is de-
veloped iteratively.

Passive approach can be based on ANN analysis
algorithms (for instance [5]) and is similar to analysis
of source code in reverse-engineering field [4].
Discovered structure cannot be further optimized
using passive approach, while active approach allows
real structure optimization.

2.1 Optimization Criteria
Both, passive and active, approaches need optimiza-
tion criteria to be defined. In passive approach this
criteria is necessary for finding the best partition of
fixed network (see [4]). In active approach this cri-
teria is optimization criteria, used to “grow” modules
inside the network.

Optimization criteria for minimization of intermod-
ule connections for single module m can be defined as:
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where N} is the number of intermodule connections
of module m and w, are weights on these connections.

Value J}! is zero if module m is disconnected from
other modules.

Optimization criteria for maximization of in-
tramodule connections for single module m can be de-
fined as:
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where N is the number of intramodule connections
of module m and w; are weights on these connections.
Value Ji" is zero if module m has no internal connec-
tions and it is less then zero if intramodule connec-
tions appear.
Rule (2) doesn’t distinguish between following two

situations:

a) single very high weight and a couple of

small weights,
b) many moderately high weights.

Case b) represents actually what we want. To com-
ply with this situation the criteria function (2) should
be modified. To disable case a) we can ignore high
weights and do not include them to rule (2). It can
be done by limiting weights to fixed maximal value.
New criteria function is:
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where f; is threshold function:
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where wy,,, is maximal desired weight, further maxi-
mization of such a high weight doesn’t result in better
evaluation by criteria (3).

Even if using criteria (3), it is possible that inter-
nal structures will emerge inside module not because
of natural modular essence, instead only to comply
with given criteria. For instance, some elimination
structures, where high positive and negative weights
are used to eliminate themselves and result is constant
zero. Further work on analysis of ANN structures is
necessary to comply with such a risks as well as for
understanding of structuralization in ANNs. Different
approaches for building-up strong intramodule con-
nectivity can be used as well too, for instance pruning
algorithms to eliminate weak connections inside mod-
ules or “Branch Control” approach [7] can be used to
determine nodes with related function and to group
them into modules.

Criteria (1), (2) and (3) are based on previous sim-
plifications and on assumption that dependency of



modules is based only on direct connections between
nodes. They should be taken as basic criteria with
possible further extensions.

To minimize described criteria it is necessary to
use algorithm which is able to minimize arbitrary
criteria or to develop a custom optimization algo-
rithm.  Although development of simple custom
algorithm dealing with criteria (1) and (3) can be
easy, optimization should also deal with original
task criteria (usually approximation or classification)
and it should allow next extensions of given criteria.
Because of these reasons, using algorithm able to
optimize according to arbitrary criteria may be pre-
ferred. Few well-known approaches can be used for
optimization according to arbitrary criteria: random
search, evolutionary computation (EC) or adaptive
critic (AC) method.

2.2 Adaptive Critic Method

Adaptive critic method is crucial in the reinforcement
learning algorithms[6]. “Adaptive critic” is ANN used
for approximation of arbitrary optimization criteria.
Once this approximation is good, optimization ac-
cording to this ANN (“adaptive critic”) is “equal” to
optimization according to original criteria. This al-
lows to use backpropagation algorithm for optimiza-
tion according arbitrary criteria.

criteria
o ;
adapfive
. ANN M{{
7
backpropagatlon
(optimization) .
backpropagation
(aproximation)

Fig.2: Optimization flows in adaptive critic method.

On figure 2 “adaptive critic” is trained (by
backpropagation) to approximate ‘‘criteria” and
backpropagation is also used to optimize ANN ac-
cording the criteria represented by “adaptive critic”.
For better understanding of AC method please see [6].

2.3 Antecedent Module

NARA type networks contain antecedent module con-
trolling the participation of other modules on the final
output. This is “IF part” module in NARA and “gat-
ing” module in “Mixture of Experts” networks. Con-
trol of participation of other modules is provided by
some way of weighting of outputs of these modules.

In NARA, weighting is physically realized by appli-
cation of (fuzzy) operators on outputs from modules.
However this weighting can be also provided by sim-
ple inputs to output nodes of particular modules (fig-
ure 3).
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Fig.3: Weighting of modules outputs by NARA type
and proposed type (circle means neuron node and
square means t-norm operator).

Sufficiently intensive inhibitory signal on such a
connection can effectively stop participation of given
module on the final output and zero signal means full
participation of module on output. This is equivalent
for 0 and 1 weighting signals in NARA network.

Consider ANNs with sigmoidal activation func-
tions ou=1/(1+e ™), in this case outputs ou of
nodes are always positive. To obtain big inhibitory
signal, it is necessary to use high negative weights
on connections. This means that antecedent network
should have connections to other modules with high
negative weights (figure 4).
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Fig. 4: Explicit antecedent module with strong in-
hibitory connections.




Going further with this idea, it can be useful to al-
low all the modules to control participation of other
modules on the final output (figure 5). This approach
allows emergency of hierarchical modular structures
(like “Hierarchical Mixtures of Experts” presented in
[3]). On the example on figure 5 the module 1 is su-
perior in hierarchy to modules 3 and 4, and module 3
is superior to module 2.
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Fig.5: Hierarchical modular structure without explicit
antecedent module.

This type of hierarchical modular structure can be
characterized by:

1. uniform modules, no explicit antecedent
module,

2. tight internal connections in every module,

3. weak intermodule connections,

3a. except few (strong) inhibitory intermodule
connections.
Mentioned characteristics can be projected to the
following change of criteria (1):
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where function f, is used to allow limited number of
strong inhibitory intermodule connections:
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where W;,;, is set of n strongest negative intermodule
connections. These connections are considered
exception from “punishment” of intermodule connec-
tions and they provide antecedent part of NARA type
of network.
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2.4 Module Parameters
They are two important parameters of modular net-
work: number of modules and module size (number

of nodes in module). These parameters can be set
fixed, as with fixed modular networks or can be
adapted on-line. For on-line adaptation of parameters,
the algorithm [4] from reverse-engineering of source
code can be used: start with random partition of
network and iteratively try similar partitions in order
to find one which minimize structure optimization
criteria better. This algorithm can be used for passive
structure discovery in fixed network as well.

3 Experiments and Discussion
Experimental setup on figure 6 was used for proof-
of-concept of proposed method. Structure with ex-
plicit antecedent module and fixed number of ex-
pected modules was defined.
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Fig.6: Experimental setup: explicit antecedent mod-
ule and four expected modules in the main network.

Goal of experiment is to change plain network
(“main network” on figure 6) to modular network.
This can be indicated by observing of minimization of
intermodule connections while “growth” of intramod-
ule connections during the learning.

Optimization criteria for fixed number of modules
were defined independently. For every expected mod-
ule they were defined two criteria: one for min-
imization of intermodule connections (1) and sec-
ond for maximization of intramodule connections (2).
Next two criteria were defined for maximization of
inhibitory connections from antecedent module and
for actual minimization of classification error. They
were 10 optimization criteria altogether. Main task
was classification of two-dimensional data into two
classes.



Scheme on figure 6 looks complicated, as it consists
of several modules and several signal flows. However,
it should be noted, that this setup was choosed in order
to test “modularization” ability of proposed method.
Structure on figure 5 and algorithm for adaptation of
module parameters from section 2.4 should allow fur-
ther refining of technique. Ideally, only two explicit
modules should be used: unstructured main network
and adaptive critic network.

The results of experiment are positive in sense of
observing modularization process. Minimization of
intermodule connections while building-up intramod-
ule connections during learning process can be clearly
observed. Experiments also showed high importance
of using efficient multiobjective optimization tech-
nique for proposed type of iterative network modu-
larization. In realistic situations proposed method in-
volve relatively high number of optimization crite-
ria, where concurrent optimization of all the criteria
should be done. Moreover, some method for proper
weighting of these criteria during learning can be use-
ful. Discussed observations prefer evolutionary com-
putation comparing to adaptive critic method to be
used for structure optimization in this task. The mul-
tiobjective optimization is in EC area widely stud-
ied and well-known methods, like fitness sharing, are
available in EC.

The time order in which criteria are satisfied can be
important for overall results too. It can be assumed
that development of crisp modules prior to develop-
ment of strong classification (or approximation) abil-
ities of network will lead to different modularization
than reverse order. This “timing” is important as par-
ticular criteria can be weighted and optimization can
be focused on different aspects of modularization dur-
ing the learning. The importance of study of “timing”
in modularization process is another observation from
realized experiments.

Automatic modularization methods can simplify
application of modular ANNs in real-world tasks. The
modularization also change the “black-box” behavior
of ANN to “grey-box” behavior, as the structured
ANN can be better analyzed than traditional plain
networks. Further, modularization can be viewed
as some kind of unsupervised learning running
concurrently with the main learning of network. This
unsupervised learning is based on idea of expectation
of modular structure of knowledge and it results in
such a modular structure. Modularization of structure
is an alternative method of the ANN simplification,
compare to elimination of links and nodes from ANN.
In this sense, modularization can be viewed as an

alternative method for improvement of generalization
performance of ANNGs.

4 Conclusion

An method for automatic modularization of neural
networks was proposed in paper. The idea of “soft
module” in contrast to strictly independent mod-
ules was introduced. This idea allowed us to treat
modularization as the optimization task, where opti-
mization is optimization of weights. The optimization
criteria for this task of modularization was defined
and selection of proper optimization method was
discussed. Realized experiments emphasized strong
multiobjective character of task and we recommend
to focus on this aspect of method in future work.
We assume automatic modularization of ANNs an
important technique for study of generalization and
analysis of function of ANNs as well as for further
improvement of ANNs performance.
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