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Abstract: — A novel, neural neural network based approach for the reconstruction of vector fields of dynamical
systems from time series data is presented. A perceptron—like fully connected two-layer neural network is used
to adapt the unknown parameters of the vector field, whereby this work is focussed on the case where the vector
field can be expresses as a multivariate polynomial in the state variables. The approach is applicable in the case

of time discrete processes as well as in the case of continuous processes.
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1 Introduction

The reconstruction of vector fields of deterministic dy-
namical systems discrete or continuous in time from
times series data is important whenever dynamical pro-
cesses are observed, where the underlying mathematical
description is incomplete or even lacking [1], [2]. Here
one can distinguish mainly between two cases: On the
one hand there are unknown phenomenological models,
such as EEG, MEG or ECG models in physiology ([3],
[4]), stock index models in finance theory or for instance
net traffic models in the field of computer science. On
the other hand there are partially known models like
some problems in geophysics, meteorology or biology. In
both cases a reconstruction or at least an approximation
of the corresponding vector field from time series data
can be useful, because the reconstructed vector field can
be investigated further in more detail either by numeri-
cal simulation or in some cases even analytically. In this
work we present a novel approach for the reconstruction
of vector fields of dynamical systems from time series
data, based on a special constructed neural network.

2 Reconstruction of vector fields

At present the work focuses on the sub-classes of dynam-
ical systems discrete or continuous in time, i.e. maps:

at +1) = f (a(t)) = ¢'(t) (1)
and ordinary differential equations (ODEs):
at) = f(a(t)) =d'(¥) (2)

whereby ¢(t) represents the n-dimensional state vector
at time ¢ and f the corresponding n-dimensional vector
field of the dynamical system depending on the state
vector. We remark, that the vector ¢'(t) have not the

same meaning in equations (1) and (2), but was intro-
duced to have a consistent notation for maps and ODEs.

In the first case it means the next state vector of the
dynamical system and in the second one the derivative
of the state vector with respect to time. However,
we have used the same notation because these vectors
play the same role in the reconstruction approach for
dynamical systems continuous and discrete in time (see
Section 3 and Fig. 1 for more details).

We assume the vector field to be of a specific type.
Firstly the dimension n of the vector field or state vec-
tor is a priori known and secondly the vector field is
assumed to be of a pure multivariate polynomial form®
up to a certain order. In this case the right hand side of
a map or ODE, i.e., the vector field f(q), can be written
as a polynomial of the state variables (g1, ...,q,) with
an unknown matrix of parameters P:

fl@=PQ (3)

For instance, if one uses for the reconstruction a poly-
nomial of order m, the matrix P and the vector @ are
given by
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Here the value p;,; represents a constant term in the
equation of motion of the first state variable, i.e. the
constant term for the first variable in the multivariate

1We remark, that the second restriction is not essential for the
approach, because also other assumptions about the form of the
vector field are possible and hence other expansions with different
basis functions can be used as well. Nevertheless the multivariate
polynomial represents a more or less generic form, because it can
be regarded as a Taylor—-expansion.



polynomial, the values p; 2 up to pi,n4+1 correspond to
the linear terms in this equation, etc.

The task of reconstruction of a multivariate polynomial
vector field is defined by the determination of the ma-
trix P by fitting a given times series data, i.e. a given
set of N vectors:

{g(ti)|i:1,...,N}

(4)
The fitting can be performed using either a least mean
square approach, whereby the following expression has
to be minimized:

N
Sl ()~ f(gt)]” = min (5)
=1

or a neural network based approach presented in this
work. The reason to develop this approach is the well—
known fault—tolerance of neural networks. This charac-
teristic property of neural networks is important when
dealing with experimental and therefore often noisy
data.

3 Neural network approach

Using the assumptions about the form of the vector field
(see Eq. (3)), a specific two—layer neural network is con-
structed (see Fig. 1). The network consists of neurons
with the identity as input and output function and a
linear activation function without threshold. The net-
work is thereby fully connected, i.e. each neuron of the
input layer is connected with each neuron of the output
layer. The number of neurons in the input layer n; is
given by the number of all possible polynomial terms
up to the given order and is equal to the number of
columns of matrix P. The number of neurons in the
output layer n, is given by the dimension of the vector
field and corresponds to the number of rows of matrix P.
The connections are weighted by weights w;, hence the
activation a; of each output neuron o; is given by:

ni
a; = E WikTk
k=1

Hereby z is the value of input neuron ¢; which corre-
sponds to one of the polynomial terms. Thus the weights
wj, of the network represent directly the values of the
unknown parameters of the vector field. In order to fit
these parameters the network has to be trained. Start-
ing with arbitrary initialized values for the weights the
network is given successively input vectors of dimension
n; which are calculated directly from the time series
data. The corresponding output of the neural network
0;(t;) = ¢;(t;) will be compared with the expected out-

put O‘;arget (t;) = q;(t;)- In the case of dynamical sys-

tems discrete in time the values ¢} (;) are directly given
by the input data at the next time step:

(6)

(7)

q;(t:) = gj(tiv1)
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Figure 1: Network architecture: an example for a two—
dimensional dynamical system and vector field recon-
struction up to the second order. The network is fully
connected, but only the upper part is shown here.

In the case of dynamical systems continuous in time the
values ¢;(t;) represent the derivative of component j of
the state vector with respect to time. The derivative can
be approximated numerically from the time series data
in a different way. For instance, we have used the three
following numerical differentiation rules:

Gt = o @+ A1)~ g;(t) 0

Gt) = 5 (@t A —glt-A0)  (9)

git:) = %At (—qj (t: + 2AAt) + 8¢;(t; + At) —
84j(t; — Ab) + q(t; — 2A)) (10)

Here the question arises, whether there is an influence
of the applied differentiation rule on the obtained recon-
struction results.

During the iterations of the training phase, the learning
algorithm adapts then the weights w;, such that the
deviation of the output vector from the reference vector
of the time series data tends to zero. After the training
the parameters of the vector field can be read off from
the weights of the neural network. We remark, that this
modus operandi is not very typical for neural applica-
tions: in most cases the weight matrix of the network
can not be directly interpreted.
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Table 1: Hénon system. Parameter setting a = 1.4,
b = 0.3. The matrix P of parameters (see Eq. (3))
of the original system (upper part, values p;;) and the
weights of the two-layer neural network which corre-
spond directly to the parameters of the reconstructed
system (lower part, values wjy ).

4 Validation

For the validation of the approach, our aim was to use
in a first step test systems in order to prove, whether
the vector field of the dynamical systems under con-
sideration can be reconstructed from pure time series
data, obtained by the numerical simulation of the sys-
tems. Hereby we investigated dynamical systems dis-
crete in time as well as continuous in time to demon-
strate the applicability of the presented approach. In
all examples presented here we have used the classi-
cal vanilla back-propagation method for the training
of the networks. This is due to the fact, that this
learning method is on the one hand a fast method,
due to its simplicity, and on the other hand sufficient
enough for the required accuracy as it turned out.
We examined also other, more sophisticated learning
methods like enhanced back-propagation, batch back-
propagation, back-propagation with momentum term or
Rprop with adaptive weight—decay ([5]). However, all
these methods did not lead to more accurate results. It
turned also out, that the usage of the above mentioned
differentiation rules (Egs. (8), (9), (10)) has no signifi-
cant influence on the accuracy of the results.

Dynamical systems discrete in time.
Reconstruction up to second order terms.

As an example for dynamical systems discrete in time
we have chosen the well-known Hénon system [6]:

1+ qo(t;) —aq®(t;)
bai(t;)

q1 (tip1)
@ (tip1) =

It is known, that this system shows a chaotic dynamics
at the parameter settings a = 1.4, b = 0.3. The results
of the reconstruction using all terms up to the second
order in the vector field, 20 000 input vectors and 10 000
training cycles are presented in Table 1. As one can see,
the approximation error lies in the range of 1072, i.e.,
quite precise values of the parameters of the vector field
are determined by the neural network.

Dynamical systems continuous in time.
Reconstruction up to second order terms.

An example for a dynamical system continuous in time
is the well-known Lorenz—63 system [7].

&(t) o(y(t) — (1))
gt) = z()(R—s2(t) —y(t)
2(t) = sz(t)y(t) — bz(t)

At the parameter settings o = 10.0, R = 175.0 and b =
% = 2.667 the system shows a chaotic dynamics. The
parameter s = 200 is an arbitrary scaling factor, which
is necessary for the usage of the SNNS-Tool (software
package for the simulation of neural networks, [8], [5]).
The results of the reconstruction using all terms up
to the second order in the vector field, 60000 input
vectors and 10000 training cycles are presented in the
Table 2. In this example the approximation error for
the reconstructed parameters of the vector field lies
in the range of 1072. Although this error is much
larger than in the case of the time discrete Hénon
system, this result is precise enough. This means that
the reconstructed system shows not only the typical
chaotic dynamics of the Lorenz—63 system but has also
a similar geometric structure.

In both examples presented so far, the basic approach
for the vector field, which have to be reconstructed, is
up to the second order, which coincides with the a priori
known maximum order of the vector field of the consid-
ered system. Therefore the question arises, whether the
approach works also in the case where there is no knowl-
edge about the maximum order of the vector field and
probably more high order terms than necessary will be
used. This topic will be treated in more detail in the
next section.

Dynamical systems continuous in time.
Reconstruction up to third order terms.

As test systems we have chosen another dynamical sys-
tem continuous in time, namely the Lorenz—84 sys-
tem [9]:

i) = —ar— (1) + (1)
i = g+ say(o) - sha(0)=(0)
2(t) = —z(t) + sbx(t)y(t) + sz(t)z(t)

Here the parameters a = 0.25,b =4.0,F =8.0,G = 1.0
and the scaling factor s = 4.0 are used. At this param-
eter setting this system shows a chaotic behavior. The
geometric structure of the corresponding chaotic strange
attractor is shown in Fig. 2. The results of the recon-
struction using all terms up to the third order in the
vector field, 80000 input vectors and 100000 training
cycles are presented in the Table 3. In this example
the approximation error for the reconstructed parame-
ters of the vector field is even larger than in the case of



the Lorenz—63 system. Moreover, there are some third
order terms (see the terms zy? and zz? in Table 3) in
the vector field which are significantly larger than zero,
although these terms do not occur in the vector field of
the original system. However this terms do not disturb
the dynamics of the reconstructed system, so that the
geometric structure is similar to the original one (see
Fig. 2).

Dynamical systems continuous in time.
Reconstruction using data with noise.

An important aspect of reconstruction of the vector field
from data is the robustness of the approach with respect
to noise. Therefore the presented approach was proved
using noisy data with different noise levels (see Table 4
and Fig. 3). Instead of the input vector ¢(¢;) we have
used vectors ¢(t;) + &, whereby the components of the
noise vectors & are randomly distributed corresponding
to Gaussian white noise N (u, o) with mean value yu = 0
and standard deviation o. It turned out, that the dy-
namical system will be reconstructed for comparatively
large values of the noise level o. The reconstruction is
possible until the noise level is lower than the distance
between two sub—sequential states of the system:

€I < Hlg(t:) — (i)l (11)

In Fig. 3.(e) and 3.(f) a case is presented, when this con-
dition is not fulfilled. An one can see, the reconstruction
fails in this case.

5 Summary

First results with time series data from several test sys-
tems (Hénon [6], Rossler [10], Rikitake [11], Lorenz-
63 [7], Lorenz—84 [9], ...) show, that it is possible to
derive the vector field of a dynamical system by the pre-
sented approach. However, due to the comparatively
large dimension of the input space and hence the large
number of parameters to be fitted by the network, a

()

Figure 2: Lorenz—84 system. Trajectories of the original
and the reconstructed system

unique solution cannot be guaranteed. This means, if
there exist several dynamical systems showing approxi-
mately the same dynamical behavior, the network deter-
mines the parameter vector of one of them. Nevertheless
in the investigated cases so far, the dynamic and geomet-
ric properties of the reconstructed systems are in good
coincidence with the test systems.

6 Outlook

A lot of future work has to be done. Of course it has to
be investigated whether it is possible to reconstruct the
vector field on the basis of experimentally observed data,
although there should be no problems concerning this
topic at least if the data are sampled with an appropriate
accuracy.

Furthermore a suitable measure of quality of approx-
imation is required and has to be developed. One
straight forward possibility is to use a weighted scalar
product instead of the usual one applied in this work
to measure the distance between the reconstructed
parameter vector and the original one.  However,
this measure is too naive, because it is based on the
parameter vector and not on the dynamic behavior of
the reconstructed system. Therefore it is necessary
to develop more sophisticated measures of quality of
approximation which consider the similarity of the dy-
namic and geometric properties of the system. First of
all one can think about the averaged distance between
the trajectories of the reconstructed and the original
system. This measure is only applicable if one scales
and translates the systems appropriate. Moreover it
must be remarked, that at least for dynamical systems
showing a chaotic behavior the distance mentioned
above has to be calculated in the sense of measurable
sets. But even more is possible if one takes into account
characteristic dynamic properties like Lyapunov expo-
nents, fractal dimensions and entropies. Additionally it
is to investigate the dependency of the reconstruction
quality with respect to the noise level ¢ and also the
step size h in the case of simulated systems and the
sampling rate in the case of experimental data. Finally
it is interesting to prove the behavior of the system
reconstructed at a specific parameter setting by varying
one or several significant parameters.
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|| 1 T y z z? Ty Tz y? Yz 22

Djk 1 2 3 4 5 6 7 8 9 10

0.0 —10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 175.0 -1.0 0.0 0.0 0.0 —200.0 0.0 0.0 0.0

0.0 0.0 0.0 —2.667 0.0 200.0 0.0 0.0 0.0 0.0

Wik 1 2 3 4 5 6 7 8 9 10
0.00002 | —10.011 | 10.006 | 0.00005 —0.0002 | —0.00004 0.0118 —0.00007 —0.008 —0.00005
0.0004 174.915 | —0.993 | —0.0005 | —0.00006 0.0006 —199.915 0.0002 —0.006 —0.0007

—0.004 | —0.0001 | 0.0001 —2.647 0.26227 199.865 —0.001 0.006 —0.00009 —0.02

Table 2: Lorenz—63 system. Reconstructed with terms of second order.

| [+ [ =« [ s | = [ 22 [ & [ = [ ¢ | v 2
Djk 1 2 3 4 5 6 7 8 9 10
0.5 —0.25 0.0 0.0 0.0 0.0 0.0 —4.0 0.0 —-4.0
0.25 0.0 -1.0 0.0 0.0 4.0 —16.0 0.0 0.0 0.0
0.0 0.0 0.0 —1.0 0.0 16.0 4.0 0.0 0.0 0.0
Wi 1 2 3 4 5 6 7 8 9 10
0.50005 | —0.25023 | —0.00011 | —0.00009 0.00003 —0.00006 —0.00018 —3.99982 | 0.00003 | —3.99998
2 0.24991 0.00029 —0.99988 0.00013 —0.00005 4.00017 —15.99996 0.00014 0.00004 0.00015
3 0.00014 | —0.00005 | —0.00021 | —0.99993 | —0.00001 15.99992 4.00012 0.00003 0.00000 | —0.00001
| || z3 z2y 2z zy? TYZ z2? Y3 y2z yz? 23
Dijk 11 12 13 14 15 16 17 18 19 20
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wik 11 12 13 14 15 16 17 18 19 20
—0.00002 | —0.00007 | —0.00005 | —0.38192 | —0.00003 0.38188 0.00004 0.00003 0.00001 —0.00004
2 —0.00011 0.00016 0.00003 —0.49224 0.00012 0.49236 0.00021 0.00003 | —0.00014 0.00004
3 0.00006 0.00004 0.00006 0.41868 —0.00003 | —0.41863 | —0.00016 | 0.00003 0.00009 —0.00002

Table 3: Lorenz—84 system. Reconstructed with terms of third order.

Gaussian white noise
N(0;0) [ N(0;0.0025) | N(0;0.02) | N(0;0.05)
[TA[[[0.11503-10° | 0.05801 | 1.11438 | 5.00007 |

Table 4: Absolute value of deviation vector A (difference between the reconstructed parameter vector and the
original one) for different noise levels o.
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Figure 3: Lorenz—63 system (Eq. (11), parameter setting o = 16.0, R = 50.0, b = 4.0, s = 200.0): comparison
between the data from the original system at different noise levels o and data from the corresponding reconstructed

systems.



