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Abstract: -The main objective of this work is to present an application of an extension of the original Knowledge 
Discovery in Databases (KDD) process called Fuzzy Prototypical Knowledge Discovery (FPKD) together with a 
FPKD based prediction model. This technique is applied to Software Engineering measurement. In order to get 
quality object-oriented information systems (OOIS), it is necessary to assess their quality focusing on diagrams 
which are available early in the development life-cycle, such as class diagrams. It is in this context where object-
oriented measures are necessary to help designers evaluate internal quality characteristics of class diagrams, such 
as structural complexity, and based on these evaluations, predict external quality characteristics, such as 
maintainability which is (and will continue to be) one of the most critical OOIS quality characteristic. Hence, by 
means of the FPKD process we will build a prediction model for class diagram maintainability based on class 
diagram structural complexity metrics. Using the FPKD process we will search for fuzzy prototypes for 
characterising class diagrams maintainability, and later we will use these prototypes for predicting class diagram 
maintainability in a real case. The data used for prediction was obtained through a controlled experiment.  
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1   Introduction 
There is a strong need for integrating Knowledge 
Discovery techniques and Software Engineering 
measurement. As Morasca and Ruhe [5] remark, this 
integration should be done in two directions: 
Software Engineering measurement will acquire a set 
of new and promising data analysis techniques and 
Knowledge Discovery will find a new application 
area. This paper shows a practical experience where 
we demonstrate the contribution of Knowledge 
Discovery in Software Engineering measurement. 
     The Knowledge Discovery can be used in 
Software Engineering for extracting knowledge from 
software empirical studies and save into a repository 
to be used in future projects. The knowledge obtained 
form empirical studies constitute a valuable asset that 
companies posses, based on which companies may 
assess their current products and  if needed take 
improvement actions. 
     In Software Engineering it can not be expected  to 
use the same measurement analysis techniques that 
are used in “exact” sciences, nor obtain the same 
degree of precision and accuracy. This occur due to 
the nature of software So that, it is necessary to find 
out other data analysis approaches. Is in this context 
where Knowledge Discovery can play a relevant role 
in extracting useful knowledge from Software 
Engineering empirical data. 

     For making sense of empirical data, we cannot 
focus on the analysis stage only but we have to 
consider the complete Knowledge Discovery in 
Databases Process (KDD) [2]. Fayyad et al. defined 
the KDD process as “the non-trivial process to 
identify valid, new, potentially useful and 
comprehensible patterns in data”.  The original KDD 
process was extended originating the FPKD process, 
which has the goal of searching fuzzy prototypes [10] 
from data. These prototypes form the foundation of a 
prediction model that can be used in different 
application domains. The FPKD process has been 
used to tackle several real problems, such as forest 
fire prediction, financial analysis or medical 
diagnosis, with very good results [6], [8]. This 
approach is more representative than standard 
approaches, because the use of an isolated algorithm 
or method  over- simplifies the complexity of the 
problem. Statistical methods or decision trees (ID3, 
C4.5, CART) are only classification processes, and it 
is very important to include a clustering model for 
finding some kinds of patterns in the initial set of 
data. The use of fuzzy schemas allows us to achieve  
better and more understandable results, concerning 
patterns and prediction results. 
     Seeing the encouraging results obtained of the 
application of the FPKD process for building 
prediction models applied to different domains, we 
decided to use the FPKD process for building a 
model for predicting the maintainability of class 



 

 

diagrams made using the standard modelling 
language, UML [7].  
     In one hand, we focus on UML class diagrams, 
because they constitutes the backbone of the OOIS, 
and they are available early in the OOIS development 
life-cycle. An in the other hand, we focus on 
maintainability because is one of the most critical 
quality characteristic [4]. Maintenance was (and will 
continue to be) the major resource waster in the 
whole software life cycle. 
     As a key artifact produced at the early phases of 
OOIS development life-cycle, the maintainability of a 
class diagram has a great impact on the quality of the 
OOIS that it is finally implemented, so that focusing 
on class diagram maintainability will be a good step 
towards getting better quality OOIS. 
     Is in this context where object-oriented measures 
are necessary to help OOIS designers to assess 
internal quality characteristics of class diagrams, such 
as structural complexity, and based on them predict 
external quality characteristics, such as 
maintainability. Hence, by means the FPKD process 
we will built a prediction model for UML class 
diagram maintainability based on class diagrams 
structural complexity metrics [3]. By this process, we 
will search fuzzy prototypes for characterising class 
diagrams maintainability, and later we will use these 
prototypes for predicting a real case class diagram 
maintainability. The data used for prediction was 
obtained trough a controlled experiment.  
     The early availability of those predictions could 
really help software engineers to take better 
decisions, soon in the OOIS development and allow 
them to do a better resource allocation based on these 
predictions. 
     This paper is organised thus: In section 2 we 
describe the steps of the FPKD process. In section 3 
we apply the FPKD process for searching fuzzy 
prototypes that characterize UML class diagram 
maintainability; we describe a controlled experiment 
carried out for extracting empirical data to be used in 
the FPKD process. In section 3 we also show an 
example of prediction of the class diagram 
maintainability applied to a new real case. The paper 
ends with a conclusion and outlook to future work in 
section 4. 
 

2. The FPKD process and the 
prediction model 
At the moment, our ability to analyse and to 
understand great sets of data is far below our  
capacity to store them. A new generation of 
techniques and computational tools becomes 
necessary for the extraction of useful knowledge, 

because a fast growth of the volume of data generally 
occurs . These techniques and tools are the subject of 
a new field of investigation denominated KDD [2]. 
     Traditionally the way to turn data into knowledge 
is  via  a manual analysis and a later interpretation. 
Normally this process is slow, expensive and highly 
subjective. In fact it becomes impassable in many 
domains like, for example, volumes of data that grow 
exponentially. When the scale of exploration, data 
manipulation and inference grows  above  the human  
capacity ,we look for the technology of  computers to 
automate  the process. 
     The task of finding patterns in data sets is  known 
by different names, according to the different 
scientific communities, for example: extraction of 
knowledge, discovery of information, archaeology of 
data, processing of patterns of data, etc. The 
investigators in data bases, statistical experts and 
recently the enterprise and business communities 
mainly use the term Data Mining. 
     In this work,  we use  the term KDD to represent 
all the process of discovery of useful knowledge from 
data,  with  Data Mining  as one step in  this process 
(application of specific algorithms to extract models 
of the data), although other steps like  preparation, 
selection and data cleaning, incorporation from 
appropriate previous expert knowledge and 
interpretation of the results are  under consideration. 
Therefore, the KDD takes and contributes theories, 
algorithms and methods of fields  like the data bases, 
machine learning, pattern recognition, statistic, 
artificial intelligence and approximate reasoning and 
Knowledge Acquisition in Expert Systems. 
     The KDD process (interactive and iterative) 
described by Fayyad et al. is shown in figure 1. 
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Figure 1. KDD process 

 
     The term pattern (in this work it will be 
denominated prototype of data) talks about a 
subgroup of data, along with a description and a 
model applicable to the same . The prototypes of data 
discovered must be valid for new data with some 
degree of certainty.  These patterns must be new, at 
least for the system and preferably for the user, and 
potentially useful. Finally, these patterns must be 
comprehensible, if  not immediately, after  
postprocessing. This definition implies that they must 



 

 

be defined measures of the goodness of the 
prototypes of data; in many cases it is possible to 
define measures of certainty (capability of 
classification of new data) or utility (quality of the 
predictions on the basis of theses prototypes of data). 
     Taking the prototype theory of psychology as a 
reference, a single representation  of  ERD 
Maintainability could be seen as prototypical. 
However, in a previous approximation  of  the 
knowledge acquisition process we were able to 
observe that this representation excessively simplifies 
the behavioural guidelines of the experts. When a 
technician is confronted with a real situation he 
handles a range of prototypes determined by a series 
of factors and must decide which type of ERD 
maintainability is to be expected. Therefore, the 
prototype “ERD maintainability” is not unique. 
     Zadeh [10] mentioned the classical prototype 
theories from the point of view of psychology, 
criticizing precisely what we have just pointed out: 
that these theories do not fit the function that a 
prototype should have. Zadeh's approach to what 
must be taken as a prototype is less intuitive than the 
conceptions of psychological theories but is more 
rational and closer to the meaning of a prototypical 
concept displayed in a more detailed examination. In 
our case, we have observed that Zadeh's idea suggests 
a concept that encompasses a set of prototypes, which 
represent the high, medium, or low compatibility of 
the samples with the concept A. “The prototype is not 
a single object or even a group of objects in A. 
Rather, it is a fuzzy schema for generating a set of 
objects which is roughly coextensive with A” [10]. 
     Based on these suggestions, modifications of the 
original KDD process are proposed, as  represents fig 
2. Which they involve incorporation of a new 
knowledge in different points and decisions of the 
users or experts. The aim must be to generate 
conceptual prototypes (Zadeh’s approach: fuzzy 
schemas) that allow us to evaluate new situations 
from these patterns, and to establish predictions if 
these prototypes represent ordered series. The stages 
of the modified KDD  called the FPKD are the 
following (see the top part of figure 2):  

- Selection: Applying the knowledge of the 
dominion and excellent knowledge a priori, 
considering the objectives of the global process 
of FPKD,  target data is created that will include 
selected sets of data or subgroups of excellent 
variables or examples. 
- Pre-processing: Data cleaning, noise 
elimination, handling of empty fields, lost data, 
unknown values or by defect. Standard 
techniques of data bases are applied. 

- Transformation: Reduction of the number of 
variables. Location of useful forms to express 
the data depending on the later use and on the 
objectives of the system. The expert knowledge 
and techniques of transformation and 
information in data bases are used. 
- Data Mining: Selection of the algorithms of 
Data Mining. Decisions about the model that is 
derived from the algorithm of Data Mining 
(classification, summary of data, prediction). 
Search  for  interest patterns, as far as concerns 
classification, decision trees, regression, 
dependency, heuristics, uncertainty, etc. 
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Figure 2. FPKD process and the prediction steps 
 

     Once the prototypes are found, for using them as 
the basis of the prediction model the formal 
representation must be done by the following stpes: 
(see the bottom part of figure 2): 

- Calculate the centre of each prototype using 
the fuzzy prototyping data collection. Represent 
the prototypes in triangular fuzzy numbers. 
- Combine the prototyping factors in order to 
obtain their affinity with each of the prototypes. 
- Determine the current situation with the 

modification of the most similar prototype, 
with a linear combination using a degree of 
affinity with the prototypes as weight 
values. 

 



 

 

3. A Practical Experience 
In this section we explain a practical experience using 
the FPKD process and the prediction model described 
in the previous section. 
     Our idea is to use UML class diagram structural 
complexity metrics (see table 1) for predicting UML 
class diagram maintainability. So that, we will apply 
the FPKD  to find the fuzzy prototypes for “class 
diagram maintainability”, and later deform them and 
predict a new real case. The data used to built those 
prototypes was collected by a controlled experiment, 
which we describe in the next sub-section. 
 

Metric name Metric definition 
NUMBER OF CLASSES (NC)  The total number of classes.  
NUMBER OF ATTRIBUTES (NA) The total number of attributes. 
NUMBER OF METHODS (NM)  The total number of methods  
NUMBER OF ASSOCIATIONS 

(NAssoc)  
The total number of associations  

NUMBER OF AGGREGATION 

(NAgg)  
The total number of aggregation 
relationships within a class 
diagram (each whole-part pair in 
an aggregation relationship) 

NUMBER OF DEPENDENCIES 

(NDep)  
The total number of dependency 
relationships 

NUMBER OF GENERALISATIONS 

(NGen)  
Is defined as the total number of 
generalisation relationships 
within a class diagram (each 
parent-child pair in a 
generalisation relationship) 

NUMBER OF GENERALISATION 

HIERARCHIES (NGenH) 
The total number of 
generalisation hierarchies in a 
class diagram 

NUMBER OF AGGREGATION 

HIERARCHIES (NAGGH) 
The total number of aggregation 
hierarchies in a class diagram 

MAXIMUM DIT (MaxDIT) It is the maximum between the 
DIT value obtained for each 
class of the class diagram. The 
DIT value for a class within a 
generalisation hierarchy is the 
longest path from the class to the 
root of the hierarchy. 

MAXIMUM HAGG (MaxHAgg) It is the maximum between the 
HAgg value obtained for each 
class of the class diagram. The 
HAgg value for a class within an 
aggregation hierarchy is the 
longest path from the class to the 
leaves. 

Table 1.  Metrics for UML class diagram structural 
complexity [3] 

 
3.1 A controlled experiment to search fuzzy 

prototypes for class diagram 
maintainability 

Taking into account some suggestions provided in 
[1], [9] about how to do empirical studies in Software 
Engineering, we carried out a controlled experiment 
with the goal of collecting empirical data to be used 
for predicting class diagrams maintainability from 

metric values obtained at the early phases of OOIS 
life-cycle. 
     The experimental subjects used in this study were 
students enrolled in the third year of Computer 
Science at the University of Castilla La-Mancha. 
Even though the subjects are students, we consider 
they have enough experience in the design and 
development of OO software to do the kind of tasks 
required in the experiment. Moreover, subjects were 
given an intensive training session related to UML 
class diagram design and also about metrics applied 
to class diagrams at a high level design, before the 
experiment took place. 
     The independent variable is UML class diagram 
structural complexity, measured by the proposed 
metrics. The dependent variable is class diagram 
mainatainbility, measured by the time the subjects 
spend doing the experiment. This time is influenced 
by the time the subjects take to understand the 
diagram, which also have a great impact on the time 
spend in maintenance tasks, so we called it 
“maintenance time” 
     The subjects were given eight UML class 
diagrams of the same universe of discourse, related to 
Bank Information Systems.  At first, they had to take 
each diagram write down the initial time, calculate 11 
metrics (see section 3.2), and finally the final time. 
The difference between the initial and the final time 
is which we consider the maintenance time. 
     Once the experiment was carried out, and the 
measurement empirical data was collected, we 
needed to predict UML class diagram maintainability. 
For doing this, we have used the FPKD process and 
the concept of fuzzy deformable prototypes for 
establishing the prediction model. 
 
3.2 Applying the FPKD process and the 

prediction model 
We will explain each of the steps we have followed 
in the FPKD process, an we will also show how to 
predict class diagram maintainability, based on 
metrics values. 

- Selection of the target data. We have taken as a 
starting set a relational database that contains 
168 records (with 12 fields, 11 represent metrics 
values, 1 represents the maintenance time) 
obtained from the calculation of the metric 
values (for each class diagram) and the time 
spent by each subject doing the experiment, 
called maintenance time. 
- Preprocessing. The Data-Cleaning was not 
necessary because we did not find any errors. 
- Transformation. This step was performed 
doing different tasks: 



 

 

Summarising subject responses. We built a 
unique table with 8 records (one record for 
each class diagram) and 12 fields (11 metrics 
and a field for the maintenance time). The 
metric values were calculated measuring 
each diagram, and the values for the 
maintenance time were obtained aggregating 
maintenance time using the mean of time. 
Clustering by Repertory Grids. In order to 
detect the relationships between the class 
diagrams, for obtaining those which are easy, 
medium or difficult to maintain (based on the 
maintenance time), we have carried out a 
hierarchical clustering process by Repertory 
Grids. The set of elements is constituted by 
the 8 class diagrams and the clustering data 
are the medium maintenance time to 
accomplish an analysis of clusters on 
elements, we have built a proximity matrix 
that represents the different similarities of the 
elements, a matrix of 8 x 8 elements (the 
diagrams) that above the diagonal represents 
the distances between the different diagrams. 
Converting these values to percentages, a 
new table is created and the application of 
Repertory Grids Analysis Algorithm returns 
a graphic as a final result (see figure 3). 
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Figure 3. Clustering results (E: Easy to maintain, M: 

Medium to maintain, D: Difficult to maintain) 
 

- Data Mining. The selected algorithm for data 
mining process was summarise functions 
(calculating factors such as medium, minimum 
and maximum time spent for maintaining each 
diagram, and finding for each one the average 
values). Table 2 shows the parametric definition 
of the prototypes. These parameters will be 
modified taking into account the degree of 
affinity of a new class diagram with the 
prototypes. With the new modified prototype we 

will be able to predict the maintainability of a 
new class diagram.  

 Maintenance Time 

Difficult  
Average 4 minutes 50 seconds 

Maximum 16 minutes 5 seconds 

Minimum 4 minutes 

Medium   

Average 3 minutes 

Maximum 10 minutes 

Minimum 4 minutes 45 seconds 

Easy  
Average 2 minutes 

Maximum 5 minutes 24 seconds 

Minimum 0 minutes 24 seconds 

Table 2. Prototypes “Easy, Medium and Difficult to 
understand“ 

- Formal Representation of conceptual 
prototypes. The prototypes have been 
represented as fuzzy numbers, which are going 
to allow us to obtain a degree of membership in 
the concept. For the sake of simplicity in the 
model, they have been represented by triangular 
fuzzy numbers. Therefore, in order to construct 
the prototypes (triangular fuzzy numbers) we 
only need to know their centrepoints (“centre of 
the prototype”), which are obtained by 
normalising and aggregating the metric values 
corresponding to the class diagrams of each of 
the prototypes (see figure 4). 

Figure 4. Representation of the prototypes 
 

- Prediction of UML class diagram 
maintainability. Using Fuzzy Deformable 
Prototypes we can deform the most similar 
prototype to a new class diagram, and define the 
factors for a new situation, using a linear 
combination with the degrees of membership as 
coefficients. We will show an example of how 
to deform the fuzzy prototypes previously 
found. Given the following metric values 
corresponding to a new class diagram: 

 

Diagram  
number (*) Similarity  

E M D 



 

 

NC NA NM NAssoc NAgg NDep NGen NAggH NGenH MaxDIT 
Max 

HAgg 

21 30 70 10 6 2 16 3 2 3 3 

 
And their normalised values: 
 

NC NA NM NAssoc NAgg Ndep NGen NAggH NGenH MaxDIT 
Max 

HAgg 

0.5 0.49 0.6 0.8 0.67 1.0 0.7 0.6 0.4 1 1 

 
The final average is 0.72. The affinity with the 
prototypes is shown in figure 5. 
 

 Figure 5. Affinity of the real case with the prototypes 
 
The most similar prototype for this new class diagram 
is “Difficult to maintain”, with a degree of 
membership of 0.35. Then, the prediction is shown in 
table 3:  

 Maintenance Time 

Average 2 minutes 45 seconds 

Maximum 5 minutes 46 seconds 

Minimum 1 minute  24 seconds 

Table 3.  Predicted value of the maintenance time 
 
The predicted maintenance time could be useful to 
designers in order to have some insights about their 
designs early in the development life-cycle. 
 

4. Conclusions and future work 
We demonstrated in this paper that Software 
Engineering measurement and  Knowledge Discovery 
can be integrated to provide fruitful results. 
     We applied and extension of the original KDD, 
the FPKD process for searching fuzzy prototypes for 
characterising class diagram maintainability. Based 
on these prototypes we have established a prediction 
model for UML class diagram maintainability by 
deforming the original ones. The input of the 
prediction model are the UML structural complexity 
metrics [3]. 
     The early availability of a prediction model  for 
class diagram maintainability, at the initial phases of 

the OOIS life-cycle, could really help OOIS 
designers to take better decisions in their design 
tasks, which is the most important goal that must 
pursue any measurement proposal if it pretends to be 
useful. 
     As future work we plan to apply the FPKD 
process to data obtained from real OOIS projects in 
order to corroborate not only the utility of the FPKD 
process and the fuzzy deformable prototypes but also 
the capability of UML class diagram structural 
complexity metrics [3] as early quality indicators.  
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