

Using Fuzzy Prototypes for Software Engineering Measurement and
Prediction

JOSÉ A. OLIVAS, MARCELA GENERO, MARIO PIATTINI, FRANCISCO P. ROMERO
Department of Computer Science
University of Castilla-La Mancha

Ronda de Calatrava, 5, 13071, Ciudad Real.
SPAIN

Abstract: -The main objective of this work is to present an application of an extension of the original Knowledge
Discovery in Databases (KDD) process called Fuzzy Prototypical Knowledge Discovery (FPKD) together with a
FPKD based prediction model. This technique is applied to Software Engineering measurement. In order to get
quality object-oriented information systems (OOIS), it is necessary to assess their quality focusing on diagrams
which are available early in the development life-cycle, such as class diagrams. It is in this context where object-
oriented measures are necessary to help designers evaluate internal quality characteristics of class diagrams, such
as structural complexity, and based on these evaluations, predict external quality characteristics, such as
maintainability which is (and will continue to be) one of the most critical OOIS quality characteristic. Hence, by
means of the FPKD process we will build a prediction model for class diagram maintainability based on class
diagram structural complexity metrics. Using the FPKD process we will search for fuzzy prototypes for
characterising class diagrams maintainability, and later we will use these prototypes for predicting class diagram
maintainability in a real case. The data used for prediction was obtained through a controlled experiment.

Key-Words: - Fuzzy Prototypes, Data Mining, Knowledge Discovery, Object-oriented Software Measurement,
Software Quality, Complexity Metrics.

1 Introduction
There is a strong need for integrating Knowledge
Discovery techniques and Software Engineering
measurement. As Morasca and Ruhe [5] remark, this
integration should be done in two directions:
Software Engineering measurement will acquire a set
of new and promising data analysis techniques and
Knowledge Discovery will find a new application
area. This paper shows a practical experience where
we demonstrate the contribution of Knowledge
Discovery in Software Engineering measurement.
 The Knowledge Discovery can be used in
Software Engineering for extracting knowledge from
software empirical studies and save into a repository
to be used in future projects. The knowledge obtained
form empirical studies constitute a valuable asset that
companies posses, based on which companies may
assess their current products and if needed take
improvement actions.
 In Software Engineering it can not be expected to
use the same measurement analysis techniques that
are used in “exact” sciences, nor obtain the same
degree of precision and accuracy. This occur due to
the nature of software So that, it is necessary to find
out other data analysis approaches. Is in this context
where Knowledge Discovery can play a relevant role
in extracting useful knowledge from Software
Engineering empirical data.

 For making sense of empirical data, we cannot
focus on the analysis stage only but we have to
consider the complete Knowledge Discovery in
Databases Process (KDD) [2]. Fayyad et al. defined
the KDD process as “the non-trivial process to
identify valid, new, potentially useful and
comprehensible patterns in data”. The original KDD
process was extended originating the FPKD process,
which has the goal of searching fuzzy prototypes [10]
from data. These prototypes form the foundation of a
prediction model that can be used in different
application domains. The FPKD process has been
used to tackle several real problems, such as forest
fire prediction, financial analysis or medical
diagnosis, with very good results [6], [8]. This
approach is more representative than standard
approaches, because the use of an isolated algorithm
or method over- simplifies the complexity of the
problem. Statistical methods or decision trees (ID3,
C4.5, CART) are only classification processes, and it
is very important to include a clustering model for
finding some kinds of patterns in the initial set of
data. The use of fuzzy schemas allows us to achieve
better and more understandable results, concerning
patterns and prediction results.
 Seeing the encouraging results obtained of the
application of the FPKD process for building
prediction models applied to different domains, we
decided to use the FPKD process for building a
model for predicting the maintainability of class

diagrams made using the standard modelling
language, UML [7].
 In one hand, we focus on UML class diagrams,
because they constitutes the backbone of the OOIS,
and they are available early in the OOIS development
life-cycle. An in the other hand, we focus on
maintainability because is one of the most critical
quality characteristic [4]. Maintenance was (and will
continue to be) the major resource waster in the
whole software life cycle.
 As a key artifact produced at the early phases of
OOIS development life-cycle, the maintainability of a
class diagram has a great impact on the quality of the
OOIS that it is finally implemented, so that focusing
on class diagram maintainability will be a good step
towards getting better quality OOIS.
 Is in this context where object-oriented measures
are necessary to help OOIS designers to assess
internal quality characteristics of class diagrams, such
as structural complexity, and based on them predict
external quality characteristics, such as
maintainability. Hence, by means the FPKD process
we will built a prediction model for UML class
diagram maintainability based on class diagrams
structural complexity metrics [3]. By this process, we
will search fuzzy prototypes for characterising class
diagrams maintainability, and later we will use these
prototypes for predicting a real case class diagram
maintainability. The data used for prediction was
obtained trough a controlled experiment.
 The early availability of those predictions could
really help software engineers to take better
decisions, soon in the OOIS development and allow
them to do a better resource allocation based on these
predictions.
 This paper is organised thus: In section 2 we
describe the steps of the FPKD process. In section 3
we apply the FPKD process for searching fuzzy
prototypes that characterize UML class diagram
maintainability; we describe a controlled experiment
carried out for extracting empirical data to be used in
the FPKD process. In section 3 we also show an
example of prediction of the class diagram
maintainability applied to a new real case. The paper
ends with a conclusion and outlook to future work in
section 4.

2. The FPKD process and the
prediction model
At the moment, our ability to analyse and to
understand great sets of data is far below our
capacity to store them. A new generation of
techniques and computational tools becomes
necessary for the extraction of useful knowledge,

because a fast growth of the volume of data generally
occurs . These techniques and tools are the subject of
a new field of investigation denominated KDD [2].
 Traditionally the way to turn data into knowledge
is via a manual analysis and a later interpretation.
Normally this process is slow, expensive and highly
subjective. In fact it becomes impassable in many
domains like, for example, volumes of data that grow
exponentially. When the scale of exploration, data
manipulation and inference grows above the human
capacity ,we look for the technology of computers to
automate the process.
 The task of finding patterns in data sets is known
by different names, according to the different
scientific communities, for example: extraction of
knowledge, discovery of information, archaeology of
data, processing of patterns of data, etc. The
investigators in data bases, statistical experts and
recently the enterprise and business communities
mainly use the term Data Mining.
 In this work, we use the term KDD to represent
all the process of discovery of useful knowledge from
data, with Data Mining as one step in this process
(application of specific algorithms to extract models
of the data), although other steps like preparation,
selection and data cleaning, incorporation from
appropriate previous expert knowledge and
interpretation of the results are under consideration.
Therefore, the KDD takes and contributes theories,
algorithms and methods of fields like the data bases,
machine learning, pattern recognition, statistic,
artificial intelligence and approximate reasoning and
Knowledge Acquisition in Expert Systems.
 The KDD process (interactive and iterative)
described by Fayyad et al. is shown in figure 1.

Data Target
Data

Preprocessed
Data

Transformed
Data

Patterns Knowledge

Selection Preprocessing Transformation

Data
Mining

Interpretation/
Evaluation

Figure 1. KDD process

 The term pattern (in this work it will be
denominated prototype of data) talks about a
subgroup of data, along with a description and a
model applicable to the same . The prototypes of data
discovered must be valid for new data with some
degree of certainty. These patterns must be new, at
least for the system and preferably for the user, and
potentially useful. Finally, these patterns must be
comprehensible, if not immediately, after
postprocessing. This definition implies that they must

be defined measures of the goodness of the
prototypes of data; in many cases it is possible to
define measures of certainty (capability of
classification of new data) or utility (quality of the
predictions on the basis of theses prototypes of data).
 Taking the prototype theory of psychology as a
reference, a single representation of ERD
Maintainability could be seen as prototypical.
However, in a previous approximation of the
knowledge acquisition process we were able to
observe that this representation excessively simplifies
the behavioural guidelines of the experts. When a
technician is confronted with a real situation he
handles a range of prototypes determined by a series
of factors and must decide which type of ERD
maintainability is to be expected. Therefore, the
prototype “ERD maintainability” is not unique.
 Zadeh [10] mentioned the classical prototype
theories from the point of view of psychology,
criticizing precisely what we have just pointed out:
that these theories do not fit the function that a
prototype should have. Zadeh's approach to what
must be taken as a prototype is less intuitive than the
conceptions of psychological theories but is more
rational and closer to the meaning of a prototypical
concept displayed in a more detailed examination. In
our case, we have observed that Zadeh's idea suggests
a concept that encompasses a set of prototypes, which
represent the high, medium, or low compatibility of
the samples with the concept A. “The prototype is not
a single object or even a group of objects in A.
Rather, it is a fuzzy schema for generating a set of
objects which is roughly coextensive with A” [10].
 Based on these suggestions, modifications of the
original KDD process are proposed, as represents fig
2. Which they involve incorporation of a new
knowledge in different points and decisions of the
users or experts. The aim must be to generate
conceptual prototypes (Zadeh’s approach: fuzzy
schemas) that allow us to evaluate new situations
from these patterns, and to establish predictions if
these prototypes represent ordered series. The stages
of the modified KDD called the FPKD are the
following (see the top part of figure 2):

- Selection: Applying the knowledge of the
dominion and excellent knowledge a priori,
considering the objectives of the global process
of FPKD, target data is created that will include
selected sets of data or subgroups of excellent
variables or examples.
- Pre-processing: Data cleaning, noise
elimination, handling of empty fields, lost data,
unknown values or by defect. Standard
techniques of data bases are applied.

- Transformation: Reduction of the number of
variables. Location of useful forms to express
the data depending on the later use and on the
objectives of the system. The expert knowledge
and techniques of transformation and
information in data bases are used.
- Data Mining: Selection of the algorithms of
Data Mining. Decisions about the model that is
derived from the algorithm of Data Mining
(classification, summary of data, prediction).
Search for interest patterns, as far as concerns
classification, decision trees, regression,
dependency, heuristics, uncertainty, etc.

Data Target
Data

Preprocessed
Data

Transformed
Data Data

Prototypes

Selection Preprocessing Transformation

Data
Mining

Knowledge

Conceptual
Prototypes

Knowledge

Knowledge

Knowledge

Knowledge

Conclusions/Prediction

Real-case
Pattern Matching with
Conceptual Prototypes

FPKD (Fuzzy-Prototypical Knowledge Discovery)

Conceptualization

Deformation of prototypes with some degree of affinity with the real case.

Figure 2. FPKD process and the prediction steps

 Once the prototypes are found, for using them as
the basis of the prediction model the formal
representation must be done by the following stpes:
(see the bottom part of figure 2):

- Calculate the centre of each prototype using
the fuzzy prototyping data collection. Represent
the prototypes in triangular fuzzy numbers.
- Combine the prototyping factors in order to
obtain their affinity with each of the prototypes.
- Determine the current situation with the

modification of the most similar prototype,
with a linear combination using a degree of
affinity with the prototypes as weight
values.

3. A Practical Experience
In this section we explain a practical experience using
the FPKD process and the prediction model described
in the previous section.
 Our idea is to use UML class diagram structural
complexity metrics (see table 1) for predicting UML
class diagram maintainability. So that, we will apply
the FPKD to find the fuzzy prototypes for “class
diagram maintainability”, and later deform them and
predict a new real case. The data used to built those
prototypes was collected by a controlled experiment,
which we describe in the next sub-section.

Metric name Metric definition
NUMBER OF CLASSES (NC) The total number of classes.
NUMBER OF ATTRIBUTES (NA) The total number of attributes.
NUMBER OF METHODS (NM) The total number of methods
NUMBER OF ASSOCIATIONS

(NAssoc)
The total number of associations

NUMBER OF AGGREGATION

(NAgg)
The total number of aggregation
relationships within a class
diagram (each whole-part pair in
an aggregation relationship)

NUMBER OF DEPENDENCIES

(NDep)
The total number of dependency
relationships

NUMBER OF GENERALISATIONS

(NGen)
Is defined as the total number of
generalisation relationships
within a class diagram (each
parent-child pair in a
generalisation relationship)

NUMBER OF GENERALISATION

HIERARCHIES (NGenH)
The total number of
generalisation hierarchies in a
class diagram

NUMBER OF AGGREGATION

HIERARCHIES (NAGGH)
The total number of aggregation
hierarchies in a class diagram

MAXIMUM DIT (MaxDIT) It is the maximum between the
DIT value obtained for each
class of the class diagram. The
DIT value for a class within a
generalisation hierarchy is the
longest path from the class to the
root of the hierarchy.

MAXIMUM HAGG (MaxHAgg) It is the maximum between the
HAgg value obtained for each
class of the class diagram. The
HAgg value for a class within an
aggregation hierarchy is the
longest path from the class to the
leaves.

Table 1. Metrics for UML class diagram structural
complexity [3]

3.1 A controlled experiment to search fuzzy

prototypes for class diagram
maintainability

Taking into account some suggestions provided in
[1], [9] about how to do empirical studies in Software
Engineering, we carried out a controlled experiment
with the goal of collecting empirical data to be used
for predicting class diagrams maintainability from

metric values obtained at the early phases of OOIS
life-cycle.
 The experimental subjects used in this study were
students enrolled in the third year of Computer
Science at the University of Castilla La-Mancha.
Even though the subjects are students, we consider
they have enough experience in the design and
development of OO software to do the kind of tasks
required in the experiment. Moreover, subjects were
given an intensive training session related to UML
class diagram design and also about metrics applied
to class diagrams at a high level design, before the
experiment took place.
 The independent variable is UML class diagram
structural complexity, measured by the proposed
metrics. The dependent variable is class diagram
mainatainbility, measured by the time the subjects
spend doing the experiment. This time is influenced
by the time the subjects take to understand the
diagram, which also have a great impact on the time
spend in maintenance tasks, so we called it
“maintenance time”
 The subjects were given eight UML class
diagrams of the same universe of discourse, related to
Bank Information Systems. At first, they had to take
each diagram write down the initial time, calculate 11
metrics (see section 3.2), and finally the final time.
The difference between the initial and the final time
is which we consider the maintenance time.
 Once the experiment was carried out, and the
measurement empirical data was collected, we
needed to predict UML class diagram maintainability.
For doing this, we have used the FPKD process and
the concept of fuzzy deformable prototypes for
establishing the prediction model.

3.2 Applying the FPKD process and the

prediction model
We will explain each of the steps we have followed
in the FPKD process, an we will also show how to
predict class diagram maintainability, based on
metrics values.

- Selection of the target data. We have taken as a
starting set a relational database that contains
168 records (with 12 fields, 11 represent metrics
values, 1 represents the maintenance time)
obtained from the calculation of the metric
values (for each class diagram) and the time
spent by each subject doing the experiment,
called maintenance time.
- Preprocessing. The Data-Cleaning was not
necessary because we did not find any errors.
- Transformation. This step was performed
doing different tasks:

Summarising subject responses. We built a
unique table with 8 records (one record for
each class diagram) and 12 fields (11 metrics
and a field for the maintenance time). The
metric values were calculated measuring
each diagram, and the values for the
maintenance time were obtained aggregating
maintenance time using the mean of time.
Clustering by Repertory Grids. In order to
detect the relationships between the class
diagrams, for obtaining those which are easy,
medium or difficult to maintain (based on the
maintenance time), we have carried out a
hierarchical clustering process by Repertory
Grids. The set of elements is constituted by
the 8 class diagrams and the clustering data
are the medium maintenance time to
accomplish an analysis of clusters on
elements, we have built a proximity matrix
that represents the different similarities of the
elements, a matrix of 8 x 8 elements (the
diagrams) that above the diagonal represents
the distances between the different diagrams.
Converting these values to percentages, a
new table is created and the application of
Repertory Grids Analysis Algorithm returns
a graphic as a final result (see figure 3).

 0%

 100%

6 4 7 5 2 3 1 8

 88%

55%

1%

50%

 82%

Figure 3. Clustering results (E: Easy to maintain, M:

Medium to maintain, D: Difficult to maintain)

- Data Mining. The selected algorithm for data
mining process was summarise functions
(calculating factors such as medium, minimum
and maximum time spent for maintaining each
diagram, and finding for each one the average
values). Table 2 shows the parametric definition
of the prototypes. These parameters will be
modified taking into account the degree of
affinity of a new class diagram with the
prototypes. With the new modified prototype we

will be able to predict the maintainability of a
new class diagram.

 Maintenance Time

Difficult
Average 4 minutes 50 seconds

Maximum 16 minutes 5 seconds

Minimum 4 minutes

Medium

Average 3 minutes

Maximum 10 minutes

Minimum 4 minutes 45 seconds

Easy
Average 2 minutes

Maximum 5 minutes 24 seconds

Minimum 0 minutes 24 seconds

Table 2. Prototypes “Easy, Medium and Difficult to
understand“

- Formal Representation of conceptual
prototypes. The prototypes have been
represented as fuzzy numbers, which are going
to allow us to obtain a degree of membership in
the concept. For the sake of simplicity in the
model, they have been represented by triangular
fuzzy numbers. Therefore, in order to construct
the prototypes (triangular fuzzy numbers) we
only need to know their centrepoints (“centre of
the prototype”), which are obtained by
normalising and aggregating the metric values
corresponding to the class diagrams of each of
the prototypes (see figure 4).

Figure 4. Representation of the prototypes

- Prediction of UML class diagram
maintainability. Using Fuzzy Deformable
Prototypes we can deform the most similar
prototype to a new class diagram, and define the
factors for a new situation, using a linear
combination with the degrees of membership as
coefficients. We will show an example of how
to deform the fuzzy prototypes previously
found. Given the following metric values
corresponding to a new class diagram:

Diagram
number (*) Similarity

E M D

NC NA NM NAssoc NAgg NDep NGen NAggH NGenH MaxDIT
Max

HAgg

21 30 70 10 6 2 16 3 2 3 3

And their normalised values:

NC NA NM NAssoc NAgg Ndep NGen NAggH NGenH MaxDIT
Max

HAgg

0.5 0.49 0.6 0.8 0.67 1.0 0.7 0.6 0.4 1 1

The final average is 0.72. The affinity with the
prototypes is shown in figure 5.

 Figure 5. Affinity of the real case with the prototypes

The most similar prototype for this new class diagram
is “Difficult to maintain”, with a degree of
membership of 0.35. Then, the prediction is shown in
table 3:

 Maintenance Time

Average 2 minutes 45 seconds

Maximum 5 minutes 46 seconds

Minimum 1 minute 24 seconds

Table 3. Predicted value of the maintenance time

The predicted maintenance time could be useful to
designers in order to have some insights about their
designs early in the development life-cycle.

4. Conclusions and future work
We demonstrated in this paper that Software
Engineering measurement and Knowledge Discovery
can be integrated to provide fruitful results.
 We applied and extension of the original KDD,
the FPKD process for searching fuzzy prototypes for
characterising class diagram maintainability. Based
on these prototypes we have established a prediction
model for UML class diagram maintainability by
deforming the original ones. The input of the
prediction model are the UML structural complexity
metrics [3].
 The early availability of a prediction model for
class diagram maintainability, at the initial phases of

the OOIS life-cycle, could really help OOIS
designers to take better decisions in their design
tasks, which is the most important goal that must
pursue any measurement proposal if it pretends to be
useful.
 As future work we plan to apply the FPKD
process to data obtained from real OOIS projects in
order to corroborate not only the utility of the FPKD
process and the fuzzy deformable prototypes but also
the capability of UML class diagram structural
complexity metrics [3] as early quality indicators.

Acknowledgements
This research is part of the DOLMEN project supported by
CICYT (TIC 2000-1673-C06-06) and the CIPRESES
project supported by CICYT (TIC 2000-1362-C02-02).

References:
[1] Briand L., Bunse C. and Daly J. (1999). A Controlled

Experiment for evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs. Technical
Report IESE 002.99/E, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern,
Germany.

[2] Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P.
(1996).The KDD Process for Extracting Useful
Knowledge from Volumes of Data. Communications
of the ACM, 39(11), 27 – 34.

[3] Genero, M., Piattini, M. and Calero, C. Early Measures
For UML class diagrams. (2000). L´Objet. 6(4),
Hermes Science Publications, 489-515.

[4] ISO/IEC 9126-1 (1999). Information Technology-
Software product quality – Part 1: Quality Model.

[5] Morasca S. and Ruhe G. Knowledge Discovery from
Empirical Software-Engineering Data. (2000).
International Journal of Software Engineering and
Knowledge Engineering. 9 (5). 495-498.

[6] Olivas J. and Romero F. (2000). FPKD. Fuzzy
Prototypical Knowledge Discovery. Application to
Forest Fire Prediction. Proceedings of the SEKE’2000,
Knowledge Systems Institute, Chicago, Ill. USA, 47 –
54.

[7] Object Management Group (1999). UML Revision
Task Force, OMG Unified Modeling Language
Specification, v. 1.3. document ad/99-06-08., 1999.

[8] Olivas, J. A. (2000). Contribution to the Experimental
Study of the Prediction based on Fuzzy Deformable
Categories, PhD Thesis, University of Castilla-La
Mancha, Spain.

[9] Wohlin C., Runeson P., Höst M., Ohlson M., Regnell
B. and Wesslén A. (2000). Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers.

[10] Zadeh, L. (1982). A note on prototype set theory and
fuzzy sets. Cognition 12, 291- 297.

