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Abstract: This paper presents the work in progress concerning the use of Neuro-Fuzzy techniques for 
modeling and control of a real system. The main objective is to control the output water temperature of 
one water gas heater, with changes in the water flow and/or changes in the setpoint. The steps taken to 
arrive at the direct and inverse models, using ANFIS, are described and the results of controlling the water 
gas heater with a Direct Inverse Control, Internal Model Control and Additive Feedforward Control 
strategies are presented. 
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1. Introduction 
The present paper describes the modeling and control 
of a prototype of a water gas heater. The main goal is 
to model and control the output water temperature of 
the water gas heater, which depends, essentially, of 
three input variables: input water temperature (cold 
water), water flow and gas flow applied to the burner. 
In section 2 the gas heater and the complete system 
are described allowing the reader to have a 
comprehension of the problems that will be detailed 
in later sections. Section 3 reports the architecture 
used to identify the model of the system. Section 4 
focuses on the three control structures used, pointing 
out their characteristics. Section 5 reports the results 
achieved with the three control strategies. At last, 
section 6 present the conclusions and give some 
details of the future work. 
 
2. The Water Gas Heater System 
The overall system can be divided in 3 main blocks: 
the water gas heater, one personal computer and one 
interface board (see figure 1). 
PC

Interface Board

with the µP 8951

Water

gas heater

RS232C connection
Run the algorithms of control  

Fig. 1.  The system main blocks. 

The water gas heater is a multiple input single output 
(MISO) system. The input variables are, the cold 
water temperature (cwt), the water flow (wf) and the 
applied gas flow into the burner (gf is proportional to 
the percentage of a pulse wide modulation (PWM) 
signal applied to the gas valve that regulates the 
applied gas flow into the burner). The output variable 
is the hot water temperature (hwt). 
The hot water temperature is a variable that is 
function of the cold water temperature, the water 
flow and the gas flow, Eq.1. 
 

Eq.1)(gf)wf,f(cwt,hwt =  
 
Under normal circumstances, the operating range of 
the hot water temperature is limited between 30ºC 
and 60ºC. The range of variation of cold water 
temperature, in Portugal, is between 5ºC and 25ºC. 
This range of variation depends on the climatic 
conditions of the region and the season of the year. 
The operating range of the water flow is between 3 
and 15 litters / minute. This range depends on the 
physic characteristics of the water gas heater (the 
burner and the permutation chamber) which means 
that depends of the maximum power (MaxP) of the 
water gas heater given by the Eq.2. 
 

(Eq.2)Kcal/minwf∆t
wfcwt)(hwtMaxP

×=
×−=

 

There are water gas heaters with several maximum 
powers, like 125, 225, 325 and 400 Kcal/min, that 
will allow ranges of water flow from 3 to 5 l/min to 
12 to 15 l/min. 



Figure 2 shows the working zones and the lower and 
higher limits of working of a water gas heater with 
the maximum power of 325 Kcal/min.  

Fig. 2.   Working limits of a 325 Kcal/min water gas 
heater. 
 
2.1. The Water Gas Heater 
The water gas heater is physically composed by a gas 
burner, a permutation chamber, a ventilator, two gas 
valves and several sensors used for control and 
security as is shown on figure 3. 
The gas burner can burn natural or propane gas. This 
burner heats the copper permutation chamber where 
the cold water enters from bellow and circulates. The 
amount of power applied to the water is controlled by 
one “proportional-type” gas valve driven by a pulse-
width modulated (PWM) signal. The cold and hot 
water temperature sensors are inexpensive negative 
coefficient resistors (NTC). The water flow sensor is 
an optical linear sensor. The overheat, ionisation and 
ventilation sensors are all binary-type sensors. 

 
Fig. 3.  Schematic of a water gas heater with its 

sensors and actuators. 
 
 
The controlled gas valve shows an almost linear 
behaviour between the percentage of the PWM input 
signal and the water temperature increase. This can 
be seen in figure 4. 
 
 
 
 

 
 

Fig. 4. Characterisation of the controlled gas valve 
with a fixed water flow of 10 l/min. 
 
To a fixed gas flow and cold water temperature, the 
permutation chamber presents a non linear function 
between the water flow and the hot water 
temperature as can be seen in figure 5. This non 
linearity was already expected because of the 
characteristics of power of the water gas heater 
presented in figure 2. 
 

 
Fig. 5. Characterisation of the permutation chamber 
for a fixed cold water temperature of 22ºC. 
 
In order to get a useful model we need to know the 
following parameters: 
 
- Sampling time 
- Dead time 
- Order of the system (space lag) 
 
To calculate the “best” sampling time a step signal 
was applied in the gas valve and the rise time of the 
hot water temperature signal was measured. Using 
Eq. 3 gives the sampling time h [9] as chosen equal 
to 1 second. 

(Eq.3)
to105
 timerisetimesamplingh <==  

The step response also shown that the water gas 
heater has a dead time of 4 seconds between the 
variation of the input signal and the hot water 
temperature variation. This dead time is due to the 
time that is necessary for the gas to arrive at the 
burner, to be burned and to heat the permutation 
chamber. 
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In order to know if there is a dead time between the 
water flow and hot water temperature, it was applied 
a step signal of water flow was applied and the 
results show that there is no dead time except the one 
generated by the sampling. 
Finally, the water gas heater can be represented in a 
detailed form, by the blocks illustrated in Figure 6. 

Fig. 6. Diagram of blocks of the water gas heater. 
 
About the order of the system, the water gas heater 
behaves like a first order system. From the step 
response it is clear that there is a dominant time 
constant. 
 
 
 
2.2. The Interface Board 
The interface board has three modules, all controlled 
by the flash-type microcontroller PHILIPS 
89C51RD. The three modules are: 
 
- Sensors and actuators module  
- Security module 
- Communications module  
 
The sensors and actuators module is responsible to 
read the cold and hot water temperatures, the 
overheat sensor status (temperature of the metallic 
structure), water flow, exhaustion sensor status 
(ventilator works with a on/off control) and the 
ionisation state (flame detection). 
At the level of the actuator devices there is the spark, 
which is responsible for the ignition period, the 
on/off gas valve used for security and the controlled 
gas valve that defines the gas flow that feeds the 
burner. 
The security module is responsible for the 
supervision and control of the security conditions. 
This module monitors and controls the overheat 
sensor, the ventilator, the ionisation, the water flow 
and the ignition period. It also controls the start up of 
the water gas heater. 
The communication module is responsible for the 
connection between the interface board and the 
computer. This connection is made by a serial 
communication using RS232C. 
 
 
2.3. The Personal Computer 
The personal computer has the function of reception 
and sending data from and to the interface board and 
performs all the control and training algorithms. All 
the software runs under the MATLAB environment. 

In the future the PC will be eliminated and the 
microcontroller will execute the control algorithms. 
 
 
Figure 7 shows one photo of the system with the 
water gas heater, the board of interface and the PC.  

Fig. 7. Photo of the real system. 
 
 
3. Identification 
Because the system shows non-linearities the use of 
hybrid networks like ANFIS (Adaptive Neuro Fuzzy 
Inference Architecture) for the direct and inverse 
model was considered to be a possible approach. 
This hybrid method takes advantage of the capacity 
that the fuzzy logic has to store knowledge and of the 
capacity of learning of the neural networks. 
According to Jang [1] with this architecture it is 
possible to approach any linear or non-linear function 
(universal approximator). 
 
3.1. Identification data and ANFIS structures 
The identification data has been chosen to respect 
two important requirements: frequency and 
amplitude spectrum wide enough [8]. With this aim, 
and with a sampling period of 1 second, the operation 
of collecting data was made successfully. 
Using the data collected and divided into training and 
test sets, direct and inverse models were identified 
using Adaptive Neuro Fuzzy Inference Systems, 
(ANFIS) an hybrid learning technique explained in 
[1]. 
The training structures used for the direct and inverse 
models can be depicted in figures 8 and 9. These 
structures are the most common solutions for training 
models and are described in several articles like in 
[4] and [8]. 
The ANFIS structure used to obtain the model and 
the inverse model contains 8 rules. It has three inputs 
with two membership functions each (bell shaped 
with three non-linear parameters) and one output. 
The total number of fitting parameters is 50, 
including 18 premise parameters (6*3 non-linear) 
and 32 consequent parameters (8*4 linear). 
Considering that k=n*h, where k is the time instant, n 
is the iteration and h the sampling time, the direct 
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model inputs are the hot water temperature at time k-
1, hwt(k-1), the gas control signal at time k-4, gf(k-
4), and the water flow signal at time k-1, wf(k-1). 
The output is the prediction of the hot water 
temperature at time k, hwt(k). 

Eq.4)(4))-gf(k1),-wf(k1),-f(hwt(kt(k)wh
^

=  
For the inverse model, the inputs are the hot water 
temperature at time k+4, hwt(k+4), the hot water 
temperature at time k+3, hwt(k+3) and the water flow 
signal at time k+3, wf(k+3). The output is the 
prediction of the control gas signal at time k, gf(k). 
In practice it is impossible to preview the future of 
the water flow, because the water flow is an 
independent variable and not controlled. So instead 
of using water flow signal at time k+3 was used, the 
water flow signal at time k-1, wf(k-1). 

Eq.5)(1))-wf(k3),hwt(k4),f(hwt(kf(k)g
^

++=  
 

 Fig. 8.  Structure for direct model training. 
 

Fig. 9.  Structure for inverse model training. 
 
The cold water temperature could be placed as an 
extra input of the model. So the model will be: 
 

Eq.6)(
1))-cwt(k4),-gf(k1),-wf(k1),-f(hwt(kt(k)wh

^
=  

However, because this variable change very slowed 
(order of days or months) it becomes difficult to get 
useful training data. So it was assumed that the cold 
water temperature is a load applied to the system. 
In the present case, the training data has been 
acquired with cold water temperature constant and 
equal to 18ºC. 
 
 
The following pictures show the training signals and 
the outputs of the direct and inverse model. The 
identification procedures were performed using the 
MATLAB Fuzzy Logic Toolbox [5] tools. The 
training was performed off-line. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Model answer to training set. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 11. Inverse model answer to training  set. 
 
From the graphics of figures 10 and 11 it is easy to 
see that the modeling errors are small enough. It is 
also clear that the error of the inverse model is 
greater than the direct one. This can be justified by 
the fact that one of the inputs of the inverse model is 
a past value of the water flow instead of the future 
value. 
 
4. Control Structures 
Many control structures concerning the use of direct 
and inverse models have been presented in the 
literature but in the aim of this article only three will 
be presented: Direct Inverse Control (DIC), Internal 
Model Control (IMC) and Additive Feedforward 
Control (AFFC). 
 
 
4.1. Direct Inverse Control (DIC).  
Direct inverse control is the simplest solution. The 
inverse model is connected in series with the plant 
(figure 12). If the inverse model is of good quality, 
the output will follow the reference with four second 
of delay (dead time of the gas heater). 
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Fig. 12.  Structure for DIC. 
 
4.2. Internal Model Control (IMC).  
Internal Model Control is a solution that consists of 
connecting in series, the inverse model of the plant 
and in parallel with the plant, the direct model. The 
difference between the output of the model and the 
output of the plant will generate an error that will be 
feedback [6]. This solution can be seen in figure 13.  
This controller usually presents a very active control 
signal. To avoid this it was used a first-order low 
pass filter with a time constant of approximately 3 
seconds. 
 

Fig. 13. Structure for IMC. 
 
 
4.3. Additive Feedforward Control (AFFC). 
Additive Feedforward Control is a solution that adds 
to an existing (but not satisfactory functioning) 
feedback controller an additional inverse process 
controller as shown in figure 14.  
The base feedback controller used was a Fuzzy Logic 
Controller tuned manually. The addition of the 
inverse process controller will improve the 
performance of the AFFC controller. 
 
 

Fig. 14. Structure for AFFC. 
 

 
5. The Real Time Control Action 
When the simulation results were considered 
satisfactory, the controllers were tested directly in the 
water gas heater. 
The three control structures were tested with setpoint 
and water flow variations and with the temperature of 
the cold water constant and equal to 23ºC. 
 
 
The application of the DIC controller shows the 
results presented in Figure 15. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Hot water temperature control using DIC. 
 

Being almost an open loop solution the DIC solution 
shows an error in stationary state due to the fact that 
the cold water temperature is different from the one 
used to obtain the training data. In this case the 
inverse model does not match the inverse behaviour 
of the real system. 
 
 
The results of the IMC solution can be depicted in 
Figure 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 16. Hot water temperature control using IMC. 
 

 
As can be seen in Figure 16, the results do not 
present error in stationary state. The closed loop 
action eliminates the error in spite of the different 
cold water temperature. 
 
 
The results for the AFFC solution can be seen in 
Figure 17. 
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Fig. 17. Hot water temperature control using AFFC. 

 
As can be seen in Figure 17 the controller shows no 
stationary error. 
 
To compare the results, we calculate the mean square 
error for three control solutions. 

MSE DIC IMC AFFC 
Complete Set 36.96 6.23 9.38 

Table 1. Mean Square Error – Comparison between 
the three solutions. 
 
From the observed results, we can conclude that, for 
this system, under these conditions the best strategy 
of control is the IMC solution. 
 
 
6. Conclusions and Future Work 
 
About the tested controllers, the following can be 
affirmed:  
- the direct inverse controller presents good 

results when load in the system does not exist; 
- the internal model controller is the one, under 

this conditions, that presents the better results of 
the three tested controllers. It presents a closed 
loop that compensates the existent load; 

- the additive feedforwad controller, also presents 
good results, however, due to the fact the 
inverse model is not accurate under the testing 
conditions it deviates the controller from the 
zero steady state error and the fuzzy controller 
(not optimised) has to correct this error. 

 
The results above show that the direct and inverse 
models must include the cold water temperature data 
as an extra input. This will probably lead to better 
results for all the controllers. 
The problem of having a system with two inputs with 
different dead times is also a problem to be solved. 
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