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Abstract: Despite the number of approaches established for Multiple Objective Optimisation Problems, few of them 
have been developed for the decision making process. Moreover methods that incorporate uncertainty in the decision 
making process are scarce. This paper describes an interactive method to handle the Decision-Maker’s preferences 
using a Genetic Algorithm. The Genetic Algorithm uses the Probabilistic Tradeoff Development method 
(PROTRADE) to describe the fitness function based on normalised objectives and introducing uncertainty in the 
decision variables as well as in the problem constraints. Using real-valued representation the algorithm is applied to a 
case study for the problem of multiple land uses. The results of this algorithm are compared with those found using a 
risk analysis program (@RISK 4.0 and RISKOptimiser). 
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1 Introduction 
Decisions are made every day. What product to 
produce, where to invest, which vendor to use, which 
car or house to buy, what price to charge, the list is 
endless. The decisions are probably based on whatever 
data one has at hand, such as, historical costs, 
competitors’ prices, vendor estimates, etc., but how 
often is it that there is full, complete information? 
Demand fluctuates, prices change, costs rise. The 
wrong decision can be made if all possible scenarios 
are not accounted for. Making the right decision means 
performing risk analysis.  
Therefore, to change the deterministic world approach 
to a realistic one, risk must be included in the criteria 
of the problems. This, as well as the assessment of the 
impact of a risk or uncertain variable on the outcome 
of a decision, is investigated in this paper. 
There are many definitions for the word risk, but 
according to Palisade Corporation it is the potential for 
realisation of unwanted, adverse consequences to 
human life, health, property, or the environment. In 
other words it is the probability of occurrence of an 
undesirable outcome. 
Risk Analysis, according to Palisade Corporation, in a 
broad sense, is any method, qualitative and/or 
quantitative, used to assess the impacts of risk on 
decisions. A myriad of Risk Analysis methods are 
used that blend both qualitative and quantitative 

techniques. Given a better understanding of the 
possible outcomes that could occur, the goal of any of 
these methods is to help the decision-maker choose a 
course of action. 
Most risk analysis methods are performed through 
simulations [1]. When problems exhibit significant 
uncertainty, which is generally quite difficult to deal 
with analytically, simulation is particularly useful. 
Furthermore most problems in practice consider the 
optimisation of several objectives simultaneously [2], 
[3]. These problems are termed multiobjective 
optimisation problems (MOP) and one of their most 
important characteristics is that a large set of solutions 
is acceptable (these solutions are considered 
equivalent). Genetic algorithms (GA) have been used 
to solve several optimisation problems including 
MOPs. Generally, GAs are stochastic algorithms based 
on natural evolution principles, that perform a search 
starting from an initial population and the application 
of certain genetic operators to find an optimal solution.  
Multiple criteria decision-making (MCDM) can be 
understood as the support system used to help the 
decision-maker (DM) to solve a decision problem. A 
decision problem normally includes attributes, 
objectives, goals and criteria [4]. Then it is possible to 
consider that MOPs are a subset of MCDM problems.  
In this paper a MCDM problem under uncertainty  
(multiple use land reclamation problem) is solved 
using a probabilistic tradeoff development method 



(PROTRADE) with a genetic algorithm (GA). To 
measure the performance of the GA and PROTRADE 
this problem was also solved using a risk analysis 
program called @RISK 4.0 and RISKOptimiser, in 
such a way to compare the results obtained. 
 

2 @RISK and RISKOptimiser 
@RISK is a decision and risk analysis program which 
due to its flexibility of application and capacity to 
handle complex inputs and large data sets has become 
very popular in the manufacturing industry [5]. It is 
based on a technique called Monte Carlo simulation, 
and it allows DMs to explore the range of possible 
outcomes for any decision by using probability 
distribution functions or ranges of possible values to 
represent uncertain factors in spreadsheet models. 
@RISK randomly samples from the probability 
distribution functions and records the resulting 
outcomes, during a simulation. The result is a 
distribution of possible outcomes, and the probabilities 
of each outcome occurring. This not only tells what 
could happen, but how likely it is to happen, and 
therefore, assists the decision-maker in making his/her 
decision by helping them recognise that some 
outcomes are more likely to occur than others, and 
should therefore be given more weight in their 
evaluation. This enables the users/decision-makers to 
look at literally thousands of scenarios. All this added 
information sounds like it might complicate decisions, 
but in fact, one of simulation’s greatest strengths is its 
power of communication. The results of @RISK are 
given graphically which illustrates the risk is faced in 
any situation. It is easy to understand this graphical 
presentation of results.  
RISKOptimiser achieves the optimisation of @RISK 
models. This is a stochastic optimisation add-in for 
Microsoft Excel. It combines the genetic algorithm 
technology of Evolver (another decision optimisation 
tool developed by Palisade Corporation, [1], [5]) with 
the Monte Carlo simulation engine of @RISK to 
optimise models that include uncertain “stochastic” 
factors. There is no other package available that has 
the solving power of RISKOptimiser. It performs 
optimisation under uncertainty, finding the best 
combination of parameters while accounting for 
random, uncontrolled factors. RISKOptimiser runs 
multiple simulations, each time using genetic 
algorithms to find a better set of parameters to 
optimise simulation results. It has countless 
applications in finance, operations research, and any 
field where optimisation problems involve uncertainty.  
 
 

3 Protrade Method 
Goicoechea et al. [6] developed a multiobjective 
stochastic method called Probabilistic Tradeoff 
Development (PROTRADE). This method is used 
basically to solve nonlinear problems considering the 
DM´s preferences (progressive articulation of 
preferences) and is capable of handling risk. The 
PROTRADE method consists of the formulation of 
surrogate and multiple attribute utility functions. The 
construction of these utility functions leads to a direct 
application of this method in GAs, where the functions 
are translated directly to the fitness function. 
This is a 12-step method defined as follows: 
 
Step 1 A vector of objective functions is defined using 
the coefficients expected values: 
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Step 2 Vectors U1 and M are defined, having the 
maximum and minimum values of the objective 
functions respectively: 
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To find the maximum values it is necessary to 
maximise each objective function separately, subject 
to constraints gq(x) ≤ 0. 
Step 3 An initial surrogate function is formulated: 
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where, zi(x) is the value of objective function i, i = 
1,2,..,n; zimin is the minimum value obtained when 
objective i is subjected to the constraints; and zi(x

*) is 



the maximum value obtained when objective i is 
subjected to the constraints. 
Step 4 An initial solution x1 is obtained maximising 
F(x), subject to constraints gq(x) ≤ 0. This solution is 
used to generate a goal vector G1: 
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Step 5 A multidimensional utility function is defined, 
in this case Goicoechea et al. (1979) proposed a 
multiplicative form: 
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this function is used to reflect the DM’s goal utility 
assessment, where k and ki are constants which are 
determined by questions posed to the DM. 
Step 6 A new surrogate objective function is defined: 
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Step 7 An alternative solution is generated maximising 
the surrogate solution S1 finding a solution called x2 
used to generate G2 and U2: 
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Step 8 A vector V1 that expresses the tradeoff between 
goal value and its probability of achievement is 
generated: 



















−

−
−

=

)1),((

)1),((

)1),((

2

222

121

1

α

α
α

ppG

G

G

x

x

x

V
M

 (10) 

where 1 – αi is such that, 
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Step9 The DM has to answer the following question: 
“Are all the zi(x2) values satisfactory?” [3] if the 
answer is affirmative the vector U2 is a solution if not 
go to step 10. 

Step 10 The zk(x) with the least satisfactory pair of 
(Gk(x2), 1-αk) is selected and the DM specifies a new 
probability for that pair. 
Step 11 The solution space is redefine creating a new 
x-space. 
Step 12 A new surrogate objective function is 
generated and a sequential search for a satisfactory 
solution is performed going back to step 7 or step 6 as 
many times as necessary.  
 
 

4 Case Study 
The Black Mesa Region problem was presented by 
Goicoechea et al. [6].  
In Northern Arizona on the Navajo Nation lands, there 
is an area of 5,700 hectares that will be strip mined for 
coal in a 30 years period.  The area has been used as 
rangeland and this activity has caused heavy 
overgrazing. This resulted in a development of a 
programme for designing and implementation of 
multiple land uses. This development programme can 
then be given to a management agency. 
Five objectives are considered [6]: 1. Livestock 
production, 2. Augmentation of water runoff, 3. 
Farming of selected crops, 4. Control of sedimentation 
rates, and 5. Fish pond harvesting. 
It is desired to maximise objectives 1,2,3 and 5 while 
objective 4 has to be minimised. The decision 
variables considered are twelve and are expressed in 
hectares of mined land: 
 
1. No reclamation program current management 

practises (x1) 
2. Contour furrowing livestock production good 

range conditions (x2) 
3. Contour furrowing livestock production poor 

range conditions (x3) 
4. Runoff augmentation compacted earth treatment 

(x4) 
5. Runoff augmentation compacting and salt 

treatment (x5) 
6. Runoff augmentation plastic cover and gravel (x6) 
7. Wheat production (x7) 
8. Corn production (x8) 
9. Alfalfa production (x9) 
10. Barley production (x10) 
11. Sorghum production (x11) 
12. Fish production pond base (x12) 
 
The objectives are defined as follows: 
 
Objective 1 Livestock production 
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where li is the number of livestock heads in animal 
units month per hectare of land (AUM/ha), and i is the 
number of decision variable applied.  
Objective 2 Water runoff 
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where ri is the water runoff yield in cubic meters per 
hectare (m3/ha), and i is the number of decision 
variable applied.  
Objective 3 Selected crops 
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where ci is the crop yield in kilograms per hectare 
(kg/ha), and i is the number of decision variable 
applied.  
Objective 4 Sediment 
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where si is the sediment yield in cubic meters per 
hectare (m3/ha), and i is the number of decision 
variable applied.  
Objective 5 Fish yield 
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where pi is the fish yield in kilograms per hectare 
(kg/ha), and i is the number of decision variable 
applied.  
 
There are three constraints to be considered: 
Constraint 1 Land 
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i
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where bi is the area to be strip-mined in a 2-year sub-
period . If the total area to be strip-mined in a 30-year 
period is 5,700 ha, then  

hectares380
15

5700
==bi  every two years. 

Constraint 2 Capital 

bxq qi
i
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where qi is the cost of implementing the ith decision 
variable, and bq is $200,000. This is an estimated value 
and was modified from the original problem ($35,000) 
Goicoechea et al.(1979). 
Constraint 3 Water 

bxw wi
i
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where wi is the water consumption of the ith decision 
variable, and bw is the water available for a 2-year 
subperiod through runoff practices and rainfall. 
Therefore, this value is a random variable since 
rainfall is unpredictable. 

The values of parameters li, ri, ci, si, pi, qi,and wi can be 
found in Goicoechea et al. [6] and Goicoechea et al. 
[3] note that the values are given as the expected value 
with its standard deviation. 
 
 

5 Initial results 
As mentioned above the case study is solved using 
both a GA and RISKOptimiser. In both methods two 
models, each with variations, are constructed, one that 
does not take risk into account and the other that does. 
This is done so that the outputs could be compared to 
see if the decision made based on the risk-free model 
would be the same as that made with the one that 
accounted for risk. 
The objective functions are calculated by using 
equations 9 to 13. Since the objective is to maximise 
the five objective functions, keeping in mind that 
objective four is to be minimised, therefore it is 
written as -f4, this is written as z(x) = [f1(x),f2(x),f3(x),-
f4(x),f5(x)]. This basically means finding the maximum 
of the sum of the five objectives. It is important to 
consider that the units of the objectives are of different 
dimension, and therefore, they cannot be added 
directly. They have to be normalised to make them 
dimensionless quantities. Each objective normalised 
will be called a goal. These goals are found by using 
equation 4 subject to the land, capital and water 
constraints. Therefore the main output of the model is 
the value of the sum of the goals. To obtain zimin and 
zi(x

*) a minimisation and maximisation of each 
individual objective function is run using both a GA 
and @RISK 4.0. 
As mentioned above the water constraint is a random 
variable since rainfall is unpredictable. To generate 
values for the water available for each 2-year 
subperiod it is necessary to run a Monte Carlo 
simulation. This simulation is done for fifteen 
iterations and then these values are used as the values 
for bw for the fifteen 2-year periods. The values 
obtained are: 2,702,473; 1,721,549; 1,047,110; 
338,251; 475,079; 803,335; 2,512,024; 845,213; 
1,944,114; 705,202; 1,425,694; 409,607; 2,275,253; 
1,576,443; 1,200,811 each value corresponds to a 2-
year subperiod. 
 
 
5.1 Problem solution using PROTRADE 
To solve the problem using PROTRADE a GA is 
implemented; the initial population is expressed in 
real-valued vectors generating randomly xi (decision 
variables) with an initial population of 80. 
In this work, the algorithm is run for 200 cycles 
performing the crossover and mutation operator 80 



times for each cycle. The selection method used is 
tournament selection; initially the tournament size was 
two (binary tournament [7]) but it was found that with 
a tournament size of three the results where better. The 
crossover used is “arithmetic crossover” [8]. The 
mutation operator selected is that proposed by 
Michalewicz [8] where the new child is a random 
value generated from a domain, in this case [0,380]. 
The crossover and mutation probabilities are 0.5 and 
0.15 respectively, finding the results shown in Table 1. 
These results are found without considering risk. The 
water constraint used for the GA is 2,702,473 m3, 
which is that, corresponded with the maximum value 
that was obtained when the Monte Carlo simulation 
was performed. 
 

Practices 
No risk  

(in Hectares) 
Risk 

(in Hectares) 
x1 194 100 
x2 3 37 
x3 0 16 
x4 4 14 
x5 3 19 
x6 51 45 
x7 2 0 
x8 2 9 
x9 89 70 
x10 10 0 
x11 3 65 
x12 18 5 

 
Table 1 Results of the land allocation using the GA 
and PROTRADE  
 
It is important to mention that in this experiment just 
the first four steps of PROTRADE method are applied. 
This means that for the moment a multiplicative form 
will not represent the DM’s preferences and they will 
be only considered once the results are found. 
In the no risk model the parameter values for equation 
9 to 13 are the expected values defined by Goicoechea 
et al. [3]. 
To introduce uncertainty on the decision variables it is 
necessary to define a normal distribution as follows: 
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This distribution will be used to generate random 
values for the decision variables’ parameters. Table 1 
shows the results of the GA considering risk. 
The maximum values for the objective function 
represented as the addition of the five objectives are 
1.3442 (no risk) and 0.639 (risk).  

In conclusion the results found considering uncertainty 
(risk) in the decision variables are significantly 
different to those found in the no risk model.  
 
 
5.2 Solution using @RISK and RISKOptimiser 
The risk-free model was constructed as follows: 
Since @RISK works in a spreadsheet format four 
tables were constructed. One containing the decision 
variables, which were represented by probability 
distributions; one with the constraints; one including 
the minimum and maximum values of the optimisation 
of the individual objective functions under the 
constraints; and the other containing the objective 
functions and the goals. The decision variables were 
assigned probability distributions because they 
represent the area allocated to the different practices, 
which can vary from zero to three hundred and eighty 
hectares (0, 380 ha). These distributions were all 
Uniform Distributions (written as RiskUniform (min, 
max)), but with different ranges. 
Before a simulation can be started, constructing a 
correlation matrix identifies all dependent and 
independent variables. The correlation coefficients are 
obtained by performing a sensitivity analysis. 
The difference occurs when risk is introduced to the 
model. The mean value of 0.3553 increased by 
approximately ten percent (10%) to 0.4574.  
The next step is to find an optimal solution for the 
problem using RISKOptimiser. This model is almost 
identical to that of @RISK. The difference is in the 
settings and options used. Once the model has been 
constructed, it is defined in the RISKOptimiser to 
search for a maximum. Values of 0.5 and 0.15 are used 
for the crossover and mutation rates respectively. 
These values are the same than those used in the GA in 
order to be able to compare. The constraints applied 
are the land, capital and water constraints; the values 
of the goals had to be between 0 and 1 inclusive. 
Recall that the water available is a random variable, 
that is bw is a random variable.   
The population size is set to 80. This is the same than 
that used in the GA. An optimisation is performed 
which uses a stopping condition of a thousand (1000) 
iterations. An optimisation stopping condition of five 
hundred (500) simulations is used.  
The first set of optimisations is performed with the 
water constraint equal to 2,702,473 m3. Therefore, 
when risk is considered the decision made is different. 
The maximum values for the objective function 
represented as the addition of the five objectives are 
1.329 (no risk) and 0.639 (risk). 
Therefore the decisions that were made from the 
model are as follows: 
 



Practices 
No risk  

(in Hectares) 
Risk 

(in Hectares) 
x1 165 99 
x2 91 32 
x3 0 16 
x4 7 16 
x5 0 19 
x6 32 57 
x7 2 1 
x8 0 9 
x9 61 62 
x10 5 0 
x11 0 63 
x12 18 7 

 
Table 2 Results of the land allocation using 
RISKOptimiser  
 
 

6 Analysing the results 
It can be seen that in the GA when risk was not 
considered (Table 1), x3 is the only practice that had no 
land allocated to it for the first 2-year period. While in 
the @RISKOptimiser model when risk was not 
considered (Table 2), x3, x5, x8 and x11 practices had no 
land allocated to them for the first 2-year period. The 
land allocated to x5, x8 and x11 practices in the GA is 
3,2 and 3 ha respectively. While x1 (no reclamation 
program) had the highest allocation in both models 
194 ha in the GA and 165 ha in the RISKOptimiser. 
With this comparisons it is possible to conclude firstly, 
that in terms of numerical results the GA had a better 
performance when risk was not included. Because the 
maximum value found in the GA is 1.3442 and in the 
RISKOptimiser model is 1.329. Secondly, in terms of 
time performance RISKOptimiser is faster than the 
GA. Finally, the GA allows the programmer to have a 
better control of the model and to know exactly what 
occurs in the algorithm. 
When risk was considered, however, there was a 
drastic change in some of the allocations. What 
remained unchanged was the management practice, 
which was given the highest amount of land. This 
remained to be x1, even though this quantity decreased 
by 40% (from 165 to 99) in the RISKOPtimiser model 
and by 51% (from 194 to 100) in the GA. The drastic 
changes occurred when all of the practices, which 
were not allocated any land, before, were now 
allocated some land, and in some cases, it was quite a 
big change. For example, x11 was now allocated 63 ha 
in the RISKOptimiser model and 65 in the GA.  
 
 

7 Conclusion 
It is therefore shown that the consideration of risk is 
very important to decision-making. The decisions 
made based on models that did not include risk, were 
different to the decisions made when it was 
considered.  
In future work some research can be directed into 
further investigation into RISKOptimiser and the 
Macro command. May decision-makers preferences be 
able to be analysed with RISKOptimiser through the 
use of a macro. Fuzzy logic rules can also be 
investigated to see if they can be used to implement 
the decision-maker's preferences either on their own or 
as the basis of a macro. 
 
 

8 Acknowledgement 
The first author acknowledges support from Consejo 
Nacional de Ciencia y Tecnología (México) and 
Instituto Tecnológico y de Estudios Superiores de 
Monterrey - Campus Estado de México. 
 
 
References: 
[1] Palisade Europe, 2000a, Announcing @RISK 4.0!, 
7 No. 1, 3-8 and 21-22. 
[2] J.P. Ignizio, Linear Programming in single- and 
multiple-objective systems, Englewood Cliffs, London: 
Prentice-Hall, 1982. 
[3] A. Goicoechea, D. R. Hansen, and L. Duckstein, 
Multiobjective Decision Analysis with Engineering 
and Business Applications, New York, Chichester: 
John Wiley and Sons, 1982. 
[4] C-L. Hwang and A. S. Md. Masud, Multiple 
Objective Decision Making- Methods and 
Applications, Lecture Notes in Economics and 
Mathematical Systems, Berlin, New York : Springer-
Verlag, 1979. 
[5] Palisade, 2000b, "@RISK 4.0", 2001, 
http://www.palisade-europe.com/html/risk.html, (1st 
July, 2001). 
[6] A. Goicoechea, L. Duckstein, and M. Fogel, 
Multiple Objectives Under Uncertainty: An Illustrative 
Application of Protrade, Water ResourcesResearch, 
Vol. 15, No. 2, April 1979, pp. 203-210. 
[7] T. Bäck, D. Fogel, and Z. Michalewicz, Preface, 
Evolutionary Computation 1, T. Bäck, D.B Fogel, T. 
Michalewicz (Eds.), Chapter 24, Bristol and 
Philadelphia, UK: Institute of Physics Publishing, 
2000. 
[8] Z. Michalewicz, Genetic Algorithms + Data 
Structures = Evolution Programs, Berlin; New York: 
Springer-Verlag, 1994. 
 


