
Hybrid Model to Design Proactivity and Multi-Agent-Systems

Jean-Dany Vally and Rémy Courdier
MAS2 IREMIA

Université de la Réunion
15 Avenue René Cassin - BP 7151, 97715 Saint-Denis messag cedex 9

La Réunion, FRANCE

Abstract: - In this paper, we present a new way to model agent and multi-agents systems (Mas). The modeling we
introduce relies on the proposal of a MAS generic model, and a hybrid model of aptitudes supporting the specific
agent's properties (autonomy, independence, adaptation). In addition to the formal description of the agent's particular
features, the hybrid model offers intrinsic advantages to handle and interrogate the modeled systems. We notice that
one of the major obstacles to the design of multi-agents systems lies in the incapacity of some models to express in a
generic way the possibilities to exploit the system. This aspect occulted at the modeling time is in part compensated in
the existing platforms by the use of static tools (mainly for observation) likely to satisfy the customer's needs. So, to
obtain a unified method of multi-agents design we move away from this policy consisting to rely on specific tools to
meet the user's needs. We consider that the system's exploitation is part and parcel of the user's needs, which must be
coped with the modeling of the system. This allows, on the one hand to obtain a greater flexibility in the system
utilization and, on the other hand to save the addition of specific mechanisms in the modeled systems. The hybrid
model binding Conceptual Graphs (CGs) and Colored Petri Nets (CP-nets), intrinsically brings a solution to these
expectations as well as a solution to the expression of the agent's specificities.

Key-Words: - Multi-agent Simulation, Evolution of Agents, Conceptual Graphs, Colored Petri Nets

1 Introduction
The multi-agent paradigm has been successfully applied
to the development of simulation environments. We
have proposed a generic simulation platform [15]
(GEneric Architecture for Multi-Agent Simulation)
designed to support specific considerations of non-linear
complex systems as defined in [1]. Our aim is now to
extend the scope of applications supported by Geamas
by accepting applications that are either reactive or
cognitive and to propose methodology principles to
guide the process of the system design [5].
 The originality and all the difficulty of our process
lies in the research for a proposal of a methodology
adapted to the complete MAS life cycle. During the
design stage, this also implies the consideration of the
static and dynamic aspects of entities, as the
consideration of agents handling during the process. This
approach is the result of the report that it is very difficult
to understand what occurs in a MAS made up of
hundreds of autonomous and self-adapting agents
without integrating, since the design stage, some
modeling tools adapted to their observation.
 To establish our reflection foundations, we already
have powerful formal elements used in object-oriented
methodologies [17], in agent-oriented methodologies [6]
[3] and in fields like SGBD [2] (for the querying of more
complex systems).
 In other fields such as linguistic, the semantic
structures (Conceptual Graphs [20], …) express
knowledge in a logically precise form, humanly

understandable, and computationally tractable. The
Conceptual Graphs (CGs) model is rich enough to
include the main features of the object-oriented model
[21] [7] and to encompass new directions in AI.
Moreover it provides some well suited forms to support
useful querying aspects. But it shows some lacks when
we have interest in efficient representation of dynamic
process. Colored Petri Nets (CPNs) [9] [11] is a
graphical oriented language for design, specification,
simulation and verification of dynamic systems. Such
model completes in a fashionable way the lacks of the
CGs model, and does not require to modify profoundly
both models with artificial concepts.
Our work consists in providing formal elements useful
for the modeling of multi-agents systems properties.
Such elements can be derived from existing formal
elements. We think that the conceptual graphs and
colored petri nets, which have not been both evaluated
for the modeling of multi-agents systems, offer a good
base for the design of conceptual modeling tools that
support the agent-oriented methodological process that
we want to work out Table 1.

Objectives Models & Languages Advantages

Proposal for a method describing the
different steps of an MAS life cycle

Agent Modeling Technique
(AMT bases)

Capabilities to model bad understood
or unpredictable complex systems

Expression of the Agent's specifities
with the theoretical support CGP-net

CG & CP-net to model the agents' specific
faculties (CGP-net)

Visual and formal modeling of a real
world

Implementation support by extension
of existing tools

Basic static & dynamic model
(CG & CP-net)

Tools to simulate, handle and query a
MAS

Table 1: Framework and position

The article is organized in four sections. Within the first
one, we present and discuss methodologies and models
concerning the agents and multi-agents systems.
According to this description, we recall the main
concepts of the agent paradigm and justify the choice of
CGs and CPNs to express them formally. In the third
part, we formally specify some of these characteristics in
our generic model. And finally, in the last part we will
discuss the advantages and contributions of our proposal.
In conclusion, we present future working lines.

2 Agent methodologies and models
After the fashion of object-oriented methodologies [17],
some notions repeat: organizations, groups and roles. In
the different methodologies these notions are more or
less formalized with more or less close semantics.
 In the Agent-Oriented Analysis and Design
methodology [3], three models are defined for analyzing
an agent system: the Agent, Organizational and
Cooperation model. In this methodology, the modeling
of specific agent features relies on extensions of object
models.
 The method Agent Modeling Technique for Systems
of BDI agents [13] defines two main levels: the external
viewpoint for the decomposition of the system into
agents and their interactions and the internal viewpoint
for the Modeling of each BDI agent class with three
models (belief model, goal model and plan model).
 One of the first methodologies to appear is the
Cassiopeia method [6]. The Cassiopeia method is a way
to address a type of problem-solving where collective
behaviors are put into operation through a set of agents.
The main concepts in Cassiopeia are those of role, agent,
dependency and group. An agent is viewed through three
levels: Individual, Relational and Organizational role.
 The organizational point of view is also present in
Aalaadin [8]. The main model for Aalaadin is the agent-
group-role model: the agent can handle roles within a
group, roles are functionalities or services of an agent
and the group structure associated with the roles enables
to express several organizational types. It is assumed that
an agent is an active, communicating entity which plays
roles within a group (roles are identified within a group).

 Aalaadin or Cassiopeia describes a first control of
collective behaviors by the use of graphs. We undertake
to go still further in this way by using graphs formalisms
adapted to the modeling of the agent paradigm
specificities.
 Now we have studied the main features of multi-
agents systems, we can concentrate on the ways we have
chosen to formalize the more relevant features of the
agent paradigm.

3 Merging features of CG and CPN
Actually, agents unlike objects are evolutive entities
with their own motivations for acting in the world. An
agent evolves with a more or less improved cognition.
 This cognition can be modeled with different
faculties at different improvement levels. Perception,
memory, learning, reasoning, understanding and action
are different aspects of the same process of cognition.
 These aspects were very studied in the field of
linguistic. Thus, we can draw nearer to a model that is
very used in this field such as that of conceptual graphs.
A conceptual graph represents a mnemic structure
generated by the process of perception. It describes a
way for assembling percepts.

3.1 The conceptual graphs
Conceptual graphs are a system of logic based on the
existential graphs of Charles Sanders Peirce and the
semantic networks of IA.
 Many popular diagrams can be viewed as special
cases of conceptual graphs: types hierarchies, entity-
relationship diagrams, dataflow diagrams, state transition
diagrams and petri nets [20]. Conceptual graphs embed
these notations in a general framework of logic.
 No extensions of the theory or the notation are
needed to use conceptual graphs as a design language for
object-oriented systems [21] [7].
 Some tools have been developed to support a
precision information retrieval like WebKb [14] which
retrieves informations on Web-accessible databases,

Notio [19] a Java API for constructing conceptual graphs
tools, …

3.2 Coloured Petri Nets
When including a sub-subsection you must use, for its
heading, small letters, 11pt, left justified, bold, Times
New Roman as here.
 Coloured Petri Nets [10] is a modeling language
developed for systems in which communication,
synchronization and resource sharing play an important
role. CP-nets combine the strengths of ordinary Petri
nets with the strengths of a high-level programming
language.
CP-nets have computer tools supporting their drawing,
simulation and formal analysis. Moses [18], Renew [16],
… are high-level Petri net simulators that provides a
flexible modeling approach. Existing tools for the
definition and use of CG and CPN are available and
extensible, we can rely on these tools to develop a
simulator for Multi-Agents Systems.

3.3 The proposal of an hybrid model
The merging of the two models is done informally in the
following way. We directly associate the values of
tokens with conceptual graphs. These values will belong
to the Conceptual Graph type. Arcs expressions,
possibly referenced by variables, will contain conceptual
graphs used to identify valid tokens. These conceptual
graphs could be bound to variables to represent them in
other arcs expressions. The possible operations inside
the arcs expressions are combinations of the canonical
formation rules of the CGs. And finally, the guard
functions are expressions where a particular relation type
called actor could be used.

Proposal 1: A CGP-net is a tuple
CGP=(CG,P,T,A,N,G,E,I) where:
(i) CG is the Conceptual Graph type,
(ii) P is a finite set of places,
(iii) T is a finite set of transitions,
(iv) A is a finite set of arcs such that: P ∩ T = P ∩

A = T ∩ A = ∅,
(v) N is a node function and is defined from A into

P × T ∪ T × P
(vi) G is a guard function defined from T into

expressions such that: ∀ t ∈ T [Type(G(t))=B
& Type(Var(G(t))=Conceptual Graph],

(vii) E is an arc expression function defined from A
into expressions such that: ∀ a ∈ A
[Type(E(a))=Conceptual Graph &
Type(Var(E(a))=Conceptual Graph],

(viii) I is an initialization function.

.
(ii)+(iii)+(iv) The places, transitions and arcs are
described by three finite sets that are pairwise disjointed.
(v) The node function maps each arc to a couple in
which the first element is a source node and the second
is the destination node. The two nodes must be of
different types (i.e., one of them a place and the other a
transition).
(vi) The guard function G, maps each transition t into a
boolean expression where all variables belong to the
Conceptual Graph type.
(vii) The arc expression function E maps each arc to an
expression belongs to the Conceptual Graph type.

 The CGP-Net's evolution does not differ from the
classic CPNets evolution (binding, step, occurrence)
[10]. However, we must notice that in classical CP-Nets
arc expressions are identified values or variables but
moreover in our model they are structured knowledge
queries. It allows on the one hand to do an abstraction
(and thus simplification) of several bindings we have
interest in and, on the other hand to increase the
expression since the CGP-Net itself can be referenced as
a concept in arc expressions.
 This simple improvement enables us to model the
main Mas features in a generic way, indeed it completes
the work done with Types (Is-a relation) by invoking
relations between Instances and Types. Is instance of is
no more the only Type's relation to manage instances,
now with a CGP-Net modeling a Type, we can model
Instance mutations. The tokens representing instances
are explicit in the Type definition (a CP-Net model) and
they are transmitted between Types by transitions. Later
we call these completions of Types: Dynamic Forms. In
this article we do not further develop in this way, we just
present the modeling of proactivity for an agent instance.
We observe that in this way any strategy could be used
to model the instance managing. The CP-net will allow
the basic manipulations and the CG the knowledge
queries.
 We consider that performatives as defined in KQML
[4] are part of the message (represented by a token), and
we concentrate on the entity interpretation and
management (arc expressions and transitions). It enables
to deal with heterogeneous entities, some will parse
performatives or sender and others will be only sensitive
to the contents or even parts of the contents. In this way,
knowledge processing depends on the perceived signals
as well as the agent’s active modes.

4 A new activity design model
We will rely on an intuitive definition, now traditional,
of agent before proposing a more practical definition.

Definition 1: An agent is an encapsulated computer
system, situated in some environment and able to act in a
flexible and autonomous way in order to meet its design
objectives [12].

Proposal 2: An agent a is a polymorphic entity which is
part of a whole W and its lacks L generate the activity
Fig. 1.

Figure 1: Agent forms

 The forms F of an agent a are structural forms or
dynamic forms.
 The structural forms SFs define different interaction
supports for the agent. An sf can represent an agent's
attribute, so it is indissociable (Example: The physical
representation of the agent in the environment) or then,
an existential agent's characteristic and so it is separable
(Example: An environmental element acquired by the
agent and by which it could interact with other entities).
SFs are used to model mutations (a butterfly agent is
defined by several SFs, from egg to adult) some
properties will evolve and others regress. Links between
SFs exist if there is a least one df which connects them.
For example a Driver is a df between the Human sf and
the Vehicle sf, Fig. 1. The agent’s SFs are defined by
sets of input and output places for receipt, action, and
memorization Fig 1.
 The different agent's DFs are defined with specific
ontological supports (Signals' types hierarchies, …)
enabling it to interact with other parts of the
environment. A df denotes an agent interaction and
interpretation mode. There are two main DFs types, they
square to the logical modalities necessary and possibly.
Before handling them in the next part, just notice that

some of the main agent’s characteristics are brought by
SFs.
Independence and relations with the system (W)
The agent's independence with the other parts of the
system rises directly. This is due to the fact that the
interactions are done by knowledge transfer between SFs
without direct calls to the behaviors. In counterpart the
system, as a whole, must ensure the knowledge transfer
between its various parts. SFs and DFs enable to model
these two interaction types without deteriorating the
agent's independence.
 The agent's interactions as a part of the system are of
two types [22]:
The vertical interactions describing dependences
between the system's properties and the part's properties
(and vice-versa).
The horizontal interactions describing constraints
among parts, which characterize the system's integrity.

Moreover, the vertical interactions (which induce the
representation of the system as a whole) offer the
possibility to ``objectify'' or ``agentify'' the signals
emitted by the agents, Fig. 2.

Figure 2: Environment forms

 The dynamic forms describing the whole, or the parts,
are represented by a model adapted to the specificities of
the agent's paradigm. These specificities intrinsically
bring flexibility for the adaptation and evolution of the
system. And one of the most significant characteristics
that we develop in this article is the proactivity.

5 CGP-nets and proactivity
One relevant feature of the agent paradigm is the
proactivity concept. CP-Nets brings intrinsically a
generic form to model proactivity. The agent’s lacks are
simply mixed to this model to reduce the intrinsic
random phenomenon.

Definition 2: Agents are proactive entities, they do not
simply react to their environment, and are able to exhibit
goals-directed behaviors to initiate actions. [23]

Proposal 3: A dynamic form f of an agent a is an
interaction and interpretation mode, it is defined by:
Processing reactions (access, storage, combination) of
knowledge generated by the system. These knowledge's
processings enable the agent to efficiently react
according to the system. Or answers actions to the
absence of information generated by the system. These

answers enable the agent to effectively act according to
its lacks.

 The model used to represent the dynamic forms is the
CGP-nets. It brings a smart representation for modeling
of DFs. The structural components are modelled with
places (sources, destinations) and the dynamic
components (capacities) with transitions. The reactions
indicate the transitions having classical arcs of the CP-
nets as sources. The actions indicate the transitions
having proactive arcs as sources (functionally
corresponding to the inhibitor arcs but bringing a
different semantics to the transition which generate the
action). Lacks correspond to the proactive arcs
expressions.
 Example: Initiation of an interaction between an
agent and a taxitor due to the lack of food Table 2 &
Fig.3.

CP-net Place Inhibitor arc Transition Inscription
Specialization

CGP-net
Structural
component

Proactivity arc Action/reaction Event/Lack

Notation

Table 2: Specialization of CP-nets concepts

Figure 3: Agent proactivity: behavior activation in

answer to the lack of signals

Lacks are modelled with CGs, this allows to model
generic to very specialized lacks. When mixed to CP-
nets they suppress the need to define several arcs
inscriptions to recognize different tokens. The equality

between an arc inscription and a token, is no longer
simply identity. It is a constructed identity.

6 Interrogation and handling of the
system
The various operations we wish to apply on multi-agents
systems are described in dynamic structures. These
dynamic structures can be defined for the environment or
a particular agent depending on the concepts concerned
with the query/handling.
 For example we can file all foods consumed by an
agent in a particular database Fig. 4. Thus, the token
containing the Daniel reference will contain also all
foods which this one will have consumed.

Figure 4: Request on the agent Daniel

 CGs tools make it possible to extract and compose
new knowledge for the system whereas CP-nets tools
enable to evolve and backup various states of a system.
A prototype relying on Notio and Renew is currently
implemented.
 Some people may think that CG or CP-net are too
basic and heavy models for representing Mas system but
we do not forget that for now people are trying to define
specific relations or structures between types and
instances (for representing in an efficient way evolutive
entities). Indeed static relation are already well defined
between Types, and investigate other relations (like
modalities) are not sufficient to determine useful
consequences for instances, we have to manage the
instances in some less abstracted ways. So a robust
instance model with simple modifications can lead us to
generic well defined relations. And moreover, in this
instance the model intrinsically support simulation and
querying aspects which are useful for dealing with a
simulated Mas. This model has to be considered as a part
of an agent and Mas ontology, like an advanced
interaction diagram. It is actually a formal way to
interact with an agent system.

7 Conclusion and perspectives
In this paper, we have introduced a new way of
modeling agent and multi-agents systems. This model
allows to decompose the various facets of an agent and a
system in structural forms and dynamic forms,
supporting the two interactions types between these two
entities. The use of the conceptual graphs and coloured
petri nets for the representation of SFs and DFs brings

several advantages to express adaptation, learning and
interrogation in a multi-agents system. Moreover one of
the main agent's characteristic: the proactivity, is
modelled in a simple and intuitive way. Finally, the
prospects of this work are interesting for simulation
thanks to multi-agents systems since it lies on a reliable
basis for which a great deal of work have been already
done concerning the formulation of requests. This
opening with regard to the possibility for expressing
requests is very significant in the field of multi-agent
simulation (it is an aspect which we propose to develop
in our future work while basing it on the existing studies
binding Conceptual Graphs and Databases).

References:
[1] T.R.J Bossomaier and D.G Green, Complex systems,

Cambridge University Press,1996.
[2] Mokrane Bouzeghoub and Elisabeth Métais,

Semantic Modeling of Object Oriented Databases,
17th International Conference on Very Large Data
Bases, September 3-6, 1991, Barcelona, Catalonia,
Spain, Proceedings, , 1991, pp. 3-14.

[3] B. Burmeister, Models and methodology for agent-
oriented analysis and design, Working Notes of the
KI'96 Worshop on Agent-Oriented Programming and
Distributed Systems, 1996.

[4] Philip R. Cohen and Hector J. Levesque,
Communicative Actions for Artificial Agents,
Proceedings of the First International Conference on
Multi--Agent Systems, 1995, pp. 65--72.

[5] R. Courdier and P. Marcenac, Un processus de
développement en spirale pour la simulation multi-
agents, L'Objet, Vol.4, No.1, 1998, pp. 73--86.

[6] A. Collinot and L. Ploix and A. Drogoul, Application
de la méthode Cassiopée à l'organisation d'une
équipe de robots, LAFORIA/IBP/CNRS, Paris VI,
1996.

[7] G. Ellis, Object-Oriented Conceptual Graphs,
Proceedings of the Third International Conference
on Conceptual Structures, (ICCS'95), 1995, pp. 144--
157.

[8] J. Ferber and O. Gutknecht, A Meta-Model for the
Analysis and Design of Organizations in Multi-
Agents Systems, Proc. of the International
Conference of Multi-Agents Systems {ICMAS'98},
Vol.X, No.X, 1998, pp. 128--135.

[9] Kurt Jensen, Coloured Petri Nets -- Basic Concepts,
Analysis Methods and Practical Use, Vol. 1: Basic
Concepts., EATCS Monographs in Theoretical
Computer Science, 1992, pp. 1--234.

[10] Kurt Jensen, An introduction to the theoretical
aspects of coloured Petri nets., Lecture Notes in

Computer Science; A Decade of Concurrency, Vol.
803, 1993, pp. 230--272.

[11] Kurt Jensen, An Introduction to the Practical Use of
Coloured Petri Nets., Lecture Notes in Computer
Science: Lectures on Petri Nets II: Applications, Vol.
1492, 1998.

[12] Nicholas R. Jennings, On agent-based software
engineering, Artificial Intelligence, Vol.177, No.2,
2000, pp. 277--296.

[13] D. Kinny and M. Georgeff and A. Rao, A
methodology and modelling technique for systems of
BDI agents, Agents Breaking Away: Proccedings of
MAMAW'96, Vol.1083,1996.

[14] P. Martin and P. Eklund, Embedding Knowledge in
Web Documents, Griffith University School of
Information Technologie, 1998.

[15] P. Marcenac and S. Giroux, GEAMAS: A Generic
Architecture for Agent-Oriented Simulations of
Complex Processes, International Journal of Applied
Intelligence, 1998.

[16] O. Kummer, F. Wienberg, M. Duvigneau, Renew -
User Guide, Technical report University of
Hamburg, 2000.

[17] J. Rumbaugh and M. Blaha and W. Premerlani and
F. Eddy and W. Lorensen, Object-Oriented Modeling
and Design, Prentice Hall, 1991.

[18] R. Esser, J.W. Janneck and M. Naedele, Applying
an Object-Oriented Petri Net Language to
Heterogeneous Systems Design, In Proceedings of
Petri Nets in System Engineering, 1997.

[19] F. Southey and J.G. Linders, Notio - A Java API for
developing CG tools, International Conference on
Conceptual Structures (ICCS'99), 1999.

[20] J.F. Sowa, Conceptual Structures - Information
Processing in Mind and Machine, Addison Wesley,
1984.

[21] J.F Sowa, Logical foundations for representing
object-oriented systems, Journal of Experimental and
Theoretical Artificial Intelligence (JETAI), 1993, pp.
237--261.

[22] A. Varzi, Parts, Wholes, and Part-Whole Relations:
The Prospects of Mereotopology, Data and
Knowledge Engineering 20, 1996, pp. 259--86.

[23] M. J. Wooldridge and N. R. Jennings, Intelligent
agents: Theory and practice, Knowledge Engineering
Review, 1995.

