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Abstract: - The concept of rough set, which an upper/lower approximation are involved in, is giving
a powerful tool to extract rules from a database or examples. In order to determine the upper/lower
approximation of a subset in an approximation space, each discrete attribute value (usually it appeals
like digital figure) plays a very important role in the process of approximation. However, so far few
papers pay attention to how to convert an originally continuous attribute values into some appropriate
discrete values. Clearly, the better conversion we give, the better approximation accuracy we will get. To
do so, we introduce fuzzy logic to divide the continuous attribute values, and further, genetic algorithm
(GA) is adopted to obtain the most proper fuzzy division. In this paper, the detailed GA-based fuzzy
modeling approach to extract rules from a database is given.

Key-Words: - Rough set; Information system; Database; Rule extraction; GA; Fuzzy modeling

1 Introduction

The effective use of computers in various realms of
human activities strongly depends on the efficiency
of algorithms implemented in these computers. So
far, many theoretical foundation stones for the al-
gorithm have been set up in which the fuzzy set
theory is the most attractive one [1]. In a couple
of decades, the application of fuzzy set to the field
of engineering has obtained some interesting and
useful results [2]-[5]. Compared with the perfor-
mance obtained from the field of engineering, the
application of fuzzy set theory to the intelligence
systems appears not as good as we were expected.
On the other hand, based on the concept of rough
classification, the rough set theory was proposed
by Pawlak [6]-[7]. Although the formation of rough
set is around 20-year later than fuzzy set, its appli-
cations to intelligence system such as rule extrac-
tion are appearing with great force [8]-[16]. In the
most views, the theories of rough set and fuzzy set
are related but distinct and complementary [17].
In this paper, we are not interested in the connec-
tions and differences of the both theories, but want
to pay attention to extract rules from database fus-
ing their merits. Basically, we use rough set theory,
which takes into consideration the indiscernibility
between objects. The indiscernibility is typically

characterized by an equivalence relation, which is
obtained by the discrete values of each attribute.
And based on the equivalence relation, a subset
in the approximation space is approximated by an
upper approximation and a lower approximation.
Then we can induce some certain rules from the
lower approximation, and possible rules from upper
approximation. Obviously, the discrete values of
each attribute influence the rule extraction directly.
There is not any problem when the attribute val-
ues are originally discrete. For example, consider
an attribute, say ”sex”, the set of attribute values
is {0, 1} where 0 expresses ”male” and 1 expresses
”female”. However, how can we get an appropri-
ate set of an attribute if the attribute values are
originally continuous? For example, say ”age”, the
candidates of the sets are {0, 1}, {0, 1, 2} and so on
where 0 expresses ”young”, 1 expresses ”old”, and
2 expresses ”middle”. Which one should be taken?
Even we can choose one, then, what interval age
is ”middle”? You say 30 ∼ 45-year old, and I may
argue that is 28 ∼ 39-year old. Who is correct? We
do not have a clue but experts do. Actually there
is not always an expert! Here in this paper we re-
call the merits of the fuzzy set theory, which deals
with the ill-definition of the boundary through the
so-called fuzzy membership functions. Further, ge-
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netic algorithm (GA) is adopted to obtain the most
proper fuzzy division.
The remainder of this paper is arranged as follows.
Section 2 describes the regular way to show how to
extract rules based on the concepts of rough set and
information system. In Section 3, after describing
the problem to be considered, we make GA-based
fuzzy modeling clear to meet the goal of rule ex-
traction with a proposal of problem solution, and
conclusion is given in Section 4.

2 Rule Extraction

2.1 Rough set

An approximation space A is an order pair A =
(U,R) where U is a set called universe and R is
an equivalence relation over U . Equivalence rela-
tion R is also called an indiscernibility relation. If
(x, y) ∈ U and (x, y) ∈ R we say that x and y
are indistinguishable in A, in symbols xRy. The
relation R partitions U into a family of disjoint
subsets. Let U/R denote the quotient set consist-
ing of equivalence classes of R. Elements of U/R
are called elementary or atomic sets. The empty
set and the union of one or more elementary sets
are called a composed, or definable sets [13]. The
family of all composed sets is denoted by Com(A).
Given an arbitrary set X ⊆ U , in general it may
not be possible to describe X precisely in A. One
may characterize X by a pair lower and upper ap-
proximations.

Definition 1 Let R be an equivalence relation on
a universe U . For any set X ⊆ U , the lower ap-
proximation apr(X) and the upper approximation
apr(X) are defined by as follows:

apr(X) = {x ∈ U | [x]R ⊆ X} (1)
apr(X) = {x ∈ U | [x]R ∩ X 6= 0} (2)

where
[x]R = {y | xRy} (3)

is the equivalence class containing x.

The lower approximation apr(X) is the union of
elementary sets which are subsets of X, and the
upper approximation apr(X) is the union of ele-
mentary sets which have a non-empty intersection
with X. The set bnd(X) = apr(X) − apr(X) is
called boundary of X in A. If bnd(X) is empty,
then subset X is exactly definable. Note that rough
set is a set of lower and upper approximation.

An accuracy measure of set X in the approxima-
tion space A = (U,R) is defined as

α(X) =
|apr(X)|
|apr(X)| (4)

where | · | denotes the cardinality of a set. Clearly,
they are true that 0 ≤ α(X) ≤ 1, and α(X) = 1 if
X is definable in A; α(X) < 1 if X is undefinable
in A.

2.2 Rule extraction

A natural way to extract rules, or represent ex-
perts’ knowledge, is to construct a set of condi-
tional productions, each of them having the form

IF { set of conditions} THEN { set of decisions}
Such a form can be easily induced taking the ad-
vantage of rough set. In an approximation space
A = (U,R), regarding a subset X of U , the whole
universe U is partitioned into three regions:
• Positive region pos(X) = apr(X);
• Negative region neg(X) = U − apr(X);
• Boundary region bnd(X) = apr(X) − apr(X)

which lead the following decision rules:
• Describing pos(X) −→ positive decision rules;
• Describing neg(X) −→ negative decision rules;
• Describing bnd(X) −→ possible decision rules.

Also, the positive decision rules, possible deci-
sion rules are referred to as certain rules, possible
rules, respectively. A simple illustration example
is shown in Section 3 (Example 1).

2.3 Information system

In an intelligence system, the database regarding
the experts’ know-how is generally given in the
form of the information system defined by Pawlak
[7].

Definition 2 An information systems S is an or-
dered quadruple

S = (U,Q, V, ρ) (5)

where U is the universe which is a non-empty finite
set of objects x; Q is a finite set of attributes q;
V = Uq∈QVq, and Vq is the domain of attribute q;
ρ is a mapping function such that ρ(x, q) ∈ Vq for
every q ∈ Q and x ∈ U . Q is composed of two
parts [10]: a set of condition attributes (C) and a
decision attribute (D), i.e., Q = C ∪ D.
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ρ also is called a decision function. If we introduce
function ρx : Q → V such that ρx(q) = ρ(x, q) for
every q ∈ Q and x ∈ U , ρx is called decision rule
in S, and x is called a label of the decision rule ρx.
If ρx is a decision rule then the restriction of ρx

to C, in symbols ρx/C, and the restriction of ρx

to D, in symbols ρx/D, are called conditions and
decisions or actions of ρx, respectively.

As mentioned before, here in this paper we use
the rough set to extract rules in a database, and
the database is given in the form of the informa-
tion system, so we need to make the connection
between information system and rough set. Let
S = (U,Q, V, ρ) be a information system, and let
q ∈ Q, x, y ∈ U . If ρx(q) = ρy(q), then we say x, y
are indistinguishable, in symbols xq̃y. Certainly, q̃
is an equivalence relation. Also, objects x, y ∈ U
are indistinguishable with respect to P ⊂ Q in S,
in symbols xP̃y, if xp̃y for every p ∈ P . In par-
ticular, if P = Q, x, y are indistinguishable in S,
in symbols xS̃y instead of xQ̃y. Therefore each in-
formation system S = (U,Q, V, ρ) defines uniquely
an approximation space A = (U, S̃), where S̃ is an
equivalence relation generated by the information
system S. Namely, if a database is given in the
form of an information system S, we can obtain an
approximation space A = (U, S̃), further, an arbi-
trary subset in U is able to be approximated by
the rough set.

3 Approach with GA-based
Fuzzy Modeling

3.1 Problem description

Before we describe the problem, first, we show an
example.

[Exmaple 1] Suppose that there is an informa-
tion system S = (U,Q, V, ρ), which is a database
about the diagnosis of influenza (Tab.1). In the in-
formation system, U = {p1, p2, · · · , p6} in which
each object (element) expresses a patient; Q =
C ∪D = {temp, sneeze, headache, influ}, Vtemp =
{0, 1, 2} in which 0 expresses ”normal”, 1 expresses
”high” and 2 expresses ”very high”; Vsneeze =
Vheadache = Vinflu = {0, 1} in which 0 expresses
”no” and 1 expresses ”yes”. Also, the mapping
function ρ is given in the table.
Clearly, S yields the following elementary sets
with respect to attributes ”temp”, ”sneeze” and

”headache”:

E1 = {p1, p5}, E2 = {p2}, E3 = {p3},

E4 = {p4}, E5 = {p6}
i.e., U/S̃ = {E1, E2, E3, E4, E5}.
Now, let us consider to approximate a subset

Table 1: Influenza data
Q

U C D
temp sneeze headache influ

p1 2 0 0 1
p2 1 1 0 1
p3 1 0 1 0
p4 1 1 1 1
p5 2 0 0 0
p6 0 1 1 0

X = {p1, p2, p4}

which is a set of patients who are catching a cold.
Based on the concepts defined in Section 2, we
have,

apr(X) = {p2, p4}
apr(X) = {p1, p5, p2, p4}
pos(X) = {p2, p4}
neg(X) = {p3, p6}
bnd(X) = {p1, p5}

therefore, pos(X) follows the certain rules below:
(1) IF temp=1 ∧ sneeze=1 ∧ handache=0

THEN inf lu=1;
(2) IF temp=1 ∧ sneeze=1 ∧ handache=1

THEN inf lu=1;
where ∧ denotes ”and”. And, bnd(X) follows the
possible rules bolow:

(3) IF temp=2 ∧ sneeze=0 ∧ handache=0
THEN inf lu=1;

(4) IF temp=2 ∧ sneeze=0 ∧ handache=0
THEN inf lu=0;

we can see that in rules (3) and (4), though they
have the same condition in IF part, the decisions
are different in THEN part. It means in such a
case (condition), you are probably catching a cold.
The negative decision rules are obtained by de-
scribing neg(X) as follows:

(5) IF temp=1 ∧ sneeze=0 ∧ handache=1
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THEN inf lu=0;
(6) IF temp=0 ∧ sneeze=1 ∧ handache=1

THEN inf lu=0;
Form (4), the approximation accuracy α(X) =
2/4 = 0.5.

In the above example, regarding the attribute
values of temp, we used that Vtemp = {0, 1, 2} =
{”normal”, ”high”,”veryhigh”}. Actually, the
temperatures of patients are continuous. For ex-
ample, temperatures of six patients (temp(p1)∼
temp(p6)) are given in Tab.2. In order to con-

Table 2: Real temperatures (oC)
patient p1 p2 p3 p4 p5 p6

temp 40.1 37.5 37.8 38.0 38.3 36.5

vert the continuous attribute values into a discrete
(or digital) attribute values like (0, 1, 2), one of the
most common method is to give some ”appropri-
ate” intervals, each of which represents one discrete
value like 1 or 2. Here, one case is shown in Fig.1.
Obviously, the discrete attribute values of temp in
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Figure 1: One case of conversion

Tab.1 matches the conversion shown in Fig.1.
However, if we change such a conversion like Fig.1
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Figure 2: Another case of conversion

to Fig.2, then Tab.1 will become Tab.3 in which
the (discrete) attribute values of temp are different
form Tab.1. In this case, regarding the same subset
X = (p1, p2, p4),

apr(X) = {p1, p2, p4}
apr(X) = {p1, p2, p4}

α(X) = 1

Clearly, the approximation accuracy is improved.
Therefore, even with a same original database in
which continuous attribute values are contained,

Table 3: Influenza data with different conversion
Q

U C D
temp sneeze headache influ

p1 2 0 0 1
p2 1 1 0 1
p3 1 0 1 0
p4 1 1 1 1
p5 1 0 0 0
p6 0 1 1 0

the different conversion has a different approxima-
tion accuracy, which directly influence the rules ex-
tracted from the database. Consequently, when we
consider such a conversion for the originally contin-
uous attribute values, there are two problems we
have to answer:

(1) How to divide the continuous values into some
intervals, each of which corresponds to a dis-
crete number?

(2) How many intervals should be taken?

3.2 Proposal of solution

The problem (1) comes to how to give a proper
boundary between two neighboring intervals. Here,
we recall the fuzzy set theory, which deals with
the ill-definition of the boundary through so-called
fuzzy membership functions. First, we make a con-
nection between the fuzzy set and usual conversion
like Fig.2. For example, as shown in Fig.3, fuzzy
sets 0̃, 1̃, 2̃, and 3̃ correspond to intervals 0, 1, 2, and
3, respectively. Consider a real attribute value x
in Fig.3, because their membership values relation
of µ1̃(x) > µ0̃(x), so x is reasonably divided into

�� �
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Figure 3: Correspondence between fuzzy sets and
usual division
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interval 1.
In this paper, we use triangular fuzzy member-
ships, and the location of the corresponding fuzzy
membership functions are chosen so that they al-
ways overlap at the membership value µ = 0.5,
therefore the fuzzy membership functions, say
number is n, can be determined completely, if n
parameters like a, b, c, and d are determined. Such
a process is called fuzzy modeling. To do so, again,
let us recall the genetic algorithm (GA), which
has been widely used in various problems as a ro-
bust search method, especially in optimum seeking.
Also, as mentioned below, the problem (2) in the
previous sub-section can be resolved in passing if
we use GA. In the upcoming sub-section, we will
describe the GA-based fuzzy modeling in detail.

3.3 GA-based fuzzy modeling

As an important branch of evolutionary compu-
tation (EC), genetic algorithm (GA) is character-
ized by its current effectiveness, strong robustness,
and simple implementation. It also has the advan-
tage of not being restrained by certain restrictive
factors of search space. GA simulates the evolu-
tionary process of a set of ”genomes” over time.
Genome is a biological term that refers to a set of
”genes” and gene is the basic building block of any
living entity. For our use now, ”genome” repre-
sents two-figure hexadecimal such as ”A8”, which
finally can be transferred to the values of param-
eters like a, b, c in Fig.3, and gene represents the
binary digit in the binary coded hexadecimal code
(BCHC) such as ”10101000”, which is the BCHC of
”A8”. A GA starts with a set of genomes, which
is referred to as a generation, created randomly
and then the evolutionary process of the ”survival
of the fittest” genomes takes place. The unfitted
genomes are removed and the remaining genomes
reproduce a new set of genomes. Reproduction of
the genomes is accomplished by applying the sim-
ulation of the two well-known genetic processes:
mutation and crossover. This process is repeated
and in each repetition a fitter generation is created.
To fit the use in this paper, our GA is composed
of the following steps:

Step 1. Find the biggest value xmax and the
smallest value xmin in the continuous attribute
values x to be considered, and evenly di-
vide [xmin, xmax] into seven interval so that
8 points correspond to a BCHC.

In this way, we have built a connection be-
tween a genome and a fuzzy division. Actu-
ally, the 8 points are candidates of division
points. Binary digit 1 in BCHC means that it
is a division point, and 0 means that it is not
a division point. For example, a hexadecimal
”4C” leads a fuzzy division shown in Fig.4.

minx
⋅ maxx

1 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

11 0 00 0 )4( C

Figure 4: Fuzzy division of a BCHC

Step 2. Create a set of N random BCHC (first
generation of genomes).

Step 3. Calculate the fitness of each BCHC.
Each BCHC leads an information system like
Tab.1 or Tab.3, therefore for a subset X to
be approximate, there are different approxi-
mation accuracy α(X) in (4). Here we use
α(X) as the fitness. Naturally, a better accu-
racy presents a better fitness.
In Fig.4, the interval number is 3, which
equals the sum of binary digit 1 in BCHC(4C).
We may suppose that the maximum number
Itvlmax of intervals is given. So when we cal-
culate the fitness of each BCHC, we will give
the worst fitness, say 0, if the sum of binary
digit 1 in a BCHC exceeds Itvlmax.
GA goes to the end if the desired fitness is
obtained. At the same time, the problem (2)
described in previous sub-section is resolved,
namely, the sum of binary digit 1 in a BCHC
with the best fitness is interval number we
should take.

Step 4. Sort the BCHCs based on their fitness
in descending order.

Step 5. Keep M (M < N) fitter BCHCs and
remove the rest of the BCHCs.

Step 6. Create the next generation by mak-
ing N − M BCHCs out of M BCHCs using
crossover and mutation operations.

Step 7. Go to step 3.
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4 Conclusion

The main purpose in this paper is to effectively ex-
tract rules from a database which is given in the
form of the information system based on the rough
set theory. To do so, the key point is how to ap-
proximate a subset with the best accuracy. In this
paper, we proposed an approach for rule extraction
using the GA-based fuzzy modeling. Hereafter, we
will apply our approach to a home-helper-oriented
medical support system.
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