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Abstract: - The operation of modern technical systems is often controlled by electronic units. In the
automotive sector lattice-like look-up tables are a common representation of non-linear multi-dimensional
parameter functions of actuators. Regardless of the strongly restricted memory capacity of automo-
tive electronic control units, manufacturers need to introduce additional functionalities to meet the new
specifications. With an increasing number of adjustable actuators the number of parameters and thus
the memory requirement within the control unit grows enormously. This work introduces a method
based on evolutionary and classical optimization algorithms which reduces the memory requirement for
2-dimensional look-up tables.
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1 Introduction

Modern technical systems are often controlled
by individual electronic control units (ECU). In
modern automotive vehicles there are more than
50 ECUs to control systems like the combustion
engine, active and passive safety systems, etc. For
the actual base state1 of the system the ECU micro
controller calculates the required parameter set-
tings for all adjustable actuators and functions.
Over the last years legal restrictions on economy
and safety together with customer requests for per-
formance have forced the manufacturers to intro-
duce additional functionalities. Thereby advanced
control systems require exponentially increasing
numbers of parameters controlling the actuators
(see e.g. [10] for the development of modern auto-
motive combustion engines). Although electronic
control units are equipped with high-performance
micro controllers, there are strong restrictions on
the complexity of control strategies. In the au-
tomotive sector, e.g. for ECUs of combustion en-
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1Here a base state is defined by a certain number of base pa-
rameters which are filtered and digitalized signals measured
by certain sensors. It’s also called operating point. The pa-
rameters completing the description of the total state of the
system depend on these base parameters.

gines, this is particularly due to relatively low com-
putational power (1 − 20 MHz) and small mem-
ory capacity (∼ 1 MByte). The latter is justified
by very high development costs that are caused
by hard robustness requirements, relatively small
production quantities, and by the demand for long
term availability. Therefore it is not possible to
increase the capacity of memory chips for ECUs as
much as necessary. Already existing and optimized
data fields approximating parameter functions of
actuators have to be modified to save memory.

2 Look-up Table Approximation

A common representation of a parameter func-
tion is a lattice-like data field with a set of parame-
ter values at a full factorial rectangular grid of base
states. This data field is often called look-up table
[6]. For the control of high performance combus-
tion engines, up to 800 1- and 2-dimensional look-
up tables are necessary. The compression method
is formalized for 2-dimensional look-up tables, but
also applicable to other dimensionalities.

Let T define the set of 2-dimensional look-up ta-
bles, i.e. with 2 input variables and one output
variable. For the following considerations input
and output variables are assumed to be scaled to
[0, 1]. An element T ∈ T, T := (t, Gt, P t) is given
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Fig. 1. A (5 × 4) look-up table (filled circles) with
two inputs (base parameters) is compressed to size
(4× 3) (circles).

by its grid size t := (t1 × t2), the grid positions
Gt := {Gt

1, G
t
2}, and the parameter values P t(Gt)

at these positions. Figure 1 visualizes a look-up
table with grid size t = (5 × 4), as an elementary
example. For a new pair of input variables (a base
state) X := (X1, X2) with Gt

1m ≤ X1 < Gt
1(m+1)

and Gt
2n ≤ X2 < Gt

2(n+1), the ECU micro con-
troller calculates the demanded output P (X) by a
bi-linear interpolation, i.e. a weighted sum of the
surrounding parameter values P t

ij := P t(Gt
1i, G

t
2j):

P (X) = Â00 · P t
m,n + Â10 · P t

m,n+1

+ Â01 · P t
m+1,n + Â11 · P t

m+1,n+1.

The terms Âij := Aij/A correspond to the four
areas visualized in figure 2 devided by the total
area A := A00 + A01 + A10 + A11.
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Fig. 2. Parameters for the bi-linear interpolation of
P (X) from a given look-up table T := (t, Gt, P t).

Recent studies of more flexible grid forms like the

associative datafield with scattered data suggested
in [14] might be better for the efficient approxi-
mation of functions with more than 2 input vari-
ables, but at least in two dimensions they often re-
quire more memory which is the critical point. The
benefit of associated datafields concerning the on-
line adaptability is ignored here, since associative
datafields could not establish till today, i.e. con-
ventional lattice-like look-up tables are still domi-
nant especially in the automotive sector.

3 Neural Network Approxima-
tion

An alternative way to calculate required param-
eters for actuators is to evaluate an artificial neural
network, e.g. a Multi-Layer Perceptron or a Radial
Basis Function network, within the ECU ([8], [13],
[11]). In this case an ECU micro controller calcu-
lates for every new base state X the demanded
output P (X) by evaluating the neural network:
P (X) = net(X). Look-up tables are then replaced
by parameters of a neural network, e.g. weights
and biases, which are determined in an offline or
sometimes in a continuous online training process.
The latter is only possible for very fast learning
algorithms. Today, neural networks are still very
rarely used for the control of automotive systems.

Later a rough comparison of the memory re-
quirements for the parameters of a Multi-Layer
Perceptron neural network on one side and for
look-up tables on the other side will be shown.

4 Look-up Table Compression

This work concentrates on the number of grid
points defining the size of a look-up table. Figure
1 visualizes the structure of a very small look-up
table for an actuator’s parameter function depend-
ing on two base parameters. For demonstration
reasons, the grid size was chosen (5 × 4), the grid
point positions are highlighted by the solid verti-
cal lines. The filled circles mark the parameter
values. The goal is to calculate a compressed look-
up table that is sufficiently similar to the origi-
nal one. The dashed lines and the circles in fig-
ure 1 indicate a possible new compressed look-up
table of size (4 × 3). In the following sections the
problem is formalized and the compression method
is outlined. Consider the following problem: Let
U ∈ T with U = (u, Gu, P u) be an original un-
compressed look-up table defined at a grid Gu of



size u = (u1 × u2) with a set of u1 · u2 param-
eter values P u. How can a compressed look-up
table C ∈ T with C = (c,Gc, P c) be constructed
that approximates the original one sufficiently ac-
curately? Assume a predetermined reduced grid
size c = (c1× c2) where at least one of c1 and c2 is
smaller than the corresponding original value. Fig-
ure 1 displays a simple situation, where an original
look-up table of size u = (5 × 4) has to be com-
pressed to one with size c = (4 × 3) indicated by
the dashed lines. Thereby the positions of the grid
points defining the edge of the base range for the
original and the compressed look-up table coincide.
The positions of the other grid points fixing the in-
terior sampling points are freely placeable for each
dimension. In order to achieve a maximal simi-
larity between the original look-up table and the
compressed one, two entangled minimization tasks
have to be performed. The following section in-
troduces a suitable objective function for the opti-
mization algorithms.

4.1 The Objective Function

An original uncompressed look-up table U is de-
fined at the grid Gu of size u = (u1×u2). There are
i = 1, . . . , u1 grid point positions Gu

1i in the first
dimension and j = 1, . . . , u2 positions Gu

2j in the
second dimension. The corresponding parameter
values are P u

ij := P u(Gu
1i, G

u
2j). The compressed

look-up table C is defined at the grid Gc with
i = 1, . . . , c1 positions Gc

1i and j = 1, . . . , c2 po-
sitions Gc

2j in the first and second dimension. The
parameter values are P c

ij := P c(Gc
1i, G

c
2j), where

the grid points are partly determined by the four
relations Gc

11 = Gu
11 = 0, Gc

1c1
= Gu

1u1
= 1,

Gc
21 = Gu

21 = 0, and Gc
2c1

= Gu
2u1

= 1 to fix the
edges of the base range. After every new setting
of the grid positions Gc the calculation of new pa-
rameter values P c at this grid is required. In order
to assess an objective function for the optimization
problem, the function

Φ(Gc, P c) :=
u1,u2∑

i,j=1

(
P̃ u

ij(G
c, P c)− P u

ij

)2
, (1)

is defined, where P̃ u(Gc, P c) := B(P c(Gc), Gu) de-
fines the bi-linear interpolated parameter values at
the original grid Gu. A Levenberg-Marquardt Al-
gorithm (see e.g. [3]) is used to calculate the set of
parameter values P̃ c which leads to the best least
square curve fit P̃ u

opt(G
c, P c) of the parameter val-

ues P u at the original grid Gu. The parameter val-

ues P̃ c are then defined by the minimum of equa-
tion (1) with respect to P c

Φ(Gc, P̃ c) := min
P c

Φ(Gc, P c). (2)

The Levenberg-Marquardt Algorithm uses the pa-
rameter values P c

ini calculated by a simple inter-
polation between the original parameter values P u

that is based on triangulation as starting point for
the least square curve fit.

Using equation (2), an objective function for the
problem of optimal positioning new grid points Gc

can now be defined by

Φ(Gc) := Φ(Gc, P̃ c). (3)

This function is minimized by means of evolution-
ary algorithms, i.e. evolution strategies and ge-
netic algorithms (see [4], [12], [1]). For comparison
reasons also classical optimization algorithms for
constrained and unconstrained problems are ap-
plied (see e.g. [3]).

4.2 Compression Algorithms

Since the points defining the grid edge are al-
ready fixed to 0 and 1 respectively, the dimen-
sion of the optimization problem is reduced to
c1 + c2 − 4. In the sequel different algorithms that
are used to solve the problem of positioning the
grid points Gc of the compressed look-up table C
are described. All algorithms need an initial set of
solutions {Gc

ini} of the problem in order to start the
optimization. For this purpose equidistant grids
Gc on the base range are slightly distorted by shift-
ing all points that lie on the same grid line by a
small random number in the orthogonal direction
(see figure 3).
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Fig. 3. A noisy rectangular grid (circles) derived from
an equidistant grid of size (5× 4) (filled circles).



4.2.1 Evolutionary Algorithms.

The problem of finding optimal new grid point
positions G̃c is now defined by the minimum of
equation (3) with respect to Gc

Φ(G̃c) := min
Gc

Φ(Gc), (4)

and can be solved by means of evolutionary al-
gorithms. Of course evolution strategies suit well
since the problem is continuous. An evolution
strategy with covariance matrix adaptation [5] is
used. The parameters are set to the standard val-
ues suggested in this work. For comparison reasons
also a standard evolution strategy without covari-
ance matrix adaptation is applied. A parent pop-
ulation with µ = 6 individuals and an offspring
population with λ = 12 individuals is chosen.

In order to apply genetic algorithms, a coding
function with application specific bit resolution is
introduced. Here, the grid point positions are en-
coded in gray code with a precision of 12 bits.
An individual has a 2-dimensional matrix struc-
ture with c1 + c2 − 4 rows and 12 columns. A
parent population of size µ = 40 individuals and
an offspring population with λ = 40 individuals
is used. The algorithm parameters were set to
an elite of 4 individuals, a tournament selection
with the best q = 4 individuals, and either uni-
form or 2-point crossover. Uniform crossover on
2-dimensional encoded individuals is equivalent to
uniform crossover for the 1-dimensional case. The
2-point crossover uses 2 crossover lines in each di-
mension and therefore separates the parents in up
to 9 exchangeable sections.

4.2.2 Classical Optimization Algorithms.

Of course also classical optimization algorithms
can be used to minimize the nonlinear multivari-
able function Φ(Gc) defined in equation (3). For
example a Sequential Quadratic Programming algo-
rithm (see e.g. [3]) is capable of handling the con-
strained optimization problem of positioning the
grid points. The transformation of the search space
from [0, 1]2 to ]−∞,∞[2 by means of

Ĝ(c) = tan((2 ·Gc − 1) · π/2),

allows to apply optimization algorithms for uncon-
strained problems. Here, both a Simplex Search
Method based on the one suggested by Nelder and
Mead and a BFGS Quasi Newton Method (see e.g.
[3] for this topic) are used.

5 An Application Example

As application example, the ignition timing an-
gle as a control parameter for a modern combustion
engine is considered. It depends on the base pa-
rameters, engine speed and relative air mass flow
which together define the base state of the engine.
An ignition timing angle look-up table of grid size
u = (24× 16) is compressed to size c = (16× 10),
i.e. 186 instead of 424 parameters. The points
defining this look-up table are plotted in the up-
per part of figure 4. The lower part of figure 4
displays this look-up table calculated at a fine grid
of size (101 × 103) by bi-linear interpolation (in-
cluding the original grid positions).

All evolutionary and classical algorithms are im-
plemented in the MATLAB environment. The
linear interpolation based on triangulation and
the Levenberg-Marquardt Algorithm for the least
square curve fit are included in the Matlab Opti-
mization Toolbox ([7]). The classical algorithms
used for the positioning of the grid points (Se-
quential Quadratic Programming, Simplex Search,
BFGS Quasi Newton) are also implemented in this
toolbox. For the following results 30 runs of each
algorithm were performed. The maximal number
of generations, where the evolutionary algorithms
converged, were 100 generations. In the case of
the classical algorithms, the internal termination
criteria were used.

5.1 Result: Compressed Look-up Table

Figure 6 shows the performance measured by
equation (4) of the different algorithms for the
compression of the ignition timing angle look-up
table to size c = (16 × 10). All evolutionary al-
gorithms find very good solutions. Note that the
overall best result 0.00121 was found by the ge-
netic algorithm with 2-point crossover. The best
result for the CMA evolution strategy was 0.00125
and for the standard evolution strategy 0.00148.
There are more significant differences in the mean
and maximum values. Here, the genetic algorithms
perform more robust than the evolution strategies.
The classical algorithms yield significantly worse
results (0.00189), especially the mean and maxi-
mum values are bad. The upper plot in figure 5
shows the overall best compressed look-up table,
the lower plot the corresponding fine evaluation.
The genetic algorithm requires much more compu-
tation time because of the high number of function
evaluations, i.e. 4000. The CMA and the standard
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Fig. 4. Top: An ignition timing angle look-up table of
grid size u = (24× 16). Bottom: The look-up table
evaluated at a fine grid of size (101× 103).

evolution strategy took 1200, and in the mean, the
classical optimization algorithms took 1400 func-
tion evaluations. But since the calibration of many
technical systems requires best parameters for the
actuators’ control, computation time is less impor-
tant and therefore also genetic algorithms are use-
able in practice.

5.2 Result: Neural Network

This section gives a rough comparison of the
memory requirement for a compressed look-up ta-
ble on one side and for parameters of a neural net-
work approximation on the other side. For this
purpose the ignition timing angle look-up table
with grid size u = (24 × 16) is chosen. The num-
ber of parameters for the compressed look-up ta-
ble with grid size c = (16 × 10), i.e. 186, and
the number of parameters for a neural network
that leads to a comparable quality at the original
grid are considered. A feedforward neural network
with 2 input neurons for the base parameters, 2
hidden layers consisting of 8 tanh neurons each,
and with 1 linear output neuron for the actuator
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Fig. 5. Top: The best compressed look-up table for
grid size c = (16 × 10). Bottom: The compressed
look-up table evaluated at the fine grid.

parameter is used. It takes 105 parameters, i.e.
weights and biases, which have to be stored in the
ECU. As training data set the original look-up ta-
ble U is used. The Levenberg-Marquardt learning
algorithm with bayesian regularization ([9], Neu-
ral Network Toolbox [2]) leads to a significantly
worse sum of square errors of the original parame-
ter values P u than the best result of the presented
method, i.e. 0.0042 instead of 0.0012. But the
comparison of the parameter values at a fine grid
with size u = (101×103) (including the original po-
sitions) shows that the neural approximation yields
a better result, i.e. 0.30605 instead of 0.33912 for
the sum of square errors. Therefore the neural net-
work approximation of the look-up table yields a
better global match of the original look-up table
than the compressed look-up table.

6 Conclusions

The memory capacity of electronic control units
can not stand the growing number of additional
parameters, that have to be introduced in order
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sion of the ignition timing angle look-up table.

to fulfill new technical specifications. To provide
memory for new parameters, a method for the op-
timal compression of already existing look-up ta-
bles was deduced. In the application example the
evolutionary algorithms yield better and more ro-
bust results than the classical optimization algo-
rithms. For higher dimensional search spaces, the
evolutinary results were significantly better. Al-
though the problem of compressing look-up tables
is a continuous one, for larger grid sizes c in the
mean genetic algorithms perform better than evo-
lution strategies. The alternative method using ar-
tificial neural networks takes less memory capacity
in order to reach a better global approximation
than the optimized compressed look-up table.

Neural network approximations of look-up tables
are very smooth and therefore optimal for the ac-
tuators’ control. The missing physical relationsip
between the network parameters and the actuator
functions, and the low degree of transparency of
neural networks will retain the dominance of con-
ventional look-up tables at least for the next years.
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Motorabstimmung. Number 434 in 12. VDI,
VDI Verlag GmbH Düsseldorf, 2000. VDI
Fortschritt-Berichte – Reihe 12: Verkehrstech-
nik/Fahrzeugtechnik.

[11] O. Nelles and R. Isermann. Identification of
nonlinear dynamic systems – classical meth-
ods versus radial basis function networks. In
American Control Conference (ACC), 1995.

[12] I. Rechenberg. Evolutionsstrategie ’94.
frommann-holzboog, Stuttgart, 1994.

[13] C. Schäffner, D. Schröder, and U. Lenz. Appli-
cation of neural networks to motor control. In
International Power Electronics Conference,
IPEC ’95, Yokohama, Japan. Proceedings pp.
46-51, Vol. 1, 1995.

[14] M. Schmitt. Associative datafields in automo-
tive control. In 3rd IEEE Conference on Con-
trol Applications, Glasgow (UK), pages 1239–
1244, 1994.


