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Abstract: - A rate-independent hysteresis model is presented, based on the nonlinear function approximation
capabilities of feed-forward neural networks. The general approach to hysteresis modelling consists of two
steps. Firstly, the memory state of the hysteretic system is determined, based on the input and output history.
Secondly, the memoryless relation between magnetic state and system output is approximated by a feed-
forward neural network. The model obeys the wiping-out and the congruency properties of hysteresis. The
proposed technique is verified by experiments. Compared to the classical Preisach hysteresis model, the new
model requires less memory and less training data. The accuracy is good and can be adapted to the
requirements of the application, as the congruency property of the model can be relaxed.

Key-Words: - Hysteresis modelling, Rate-independent hysteresis, Dynamic system, Neural networks

1   Introduction
Hysteresis phenomena are encountered in many
areas of engineering science. Examples include
magnetic hysteresis, mechanical hysteresis, etc.
Hysteresis is a memory effect, in the sense that the
output y(t) at time t of a transducer exhibiting
hysteresis lags behind its input u(t) at time t. The
output y(t) is thus dependent on the current input u(t)
and the previous input history u(tprev) for all tprev < t.
     The accurate modelling of hysteresis phenomena
is important for the design of devices exhibiting
hysteresis. Many hysteresis models exist, but they
all have their limitations concerning the types of
hysteresis phenomena they can handle [1]. Major
drawbacks are the computation speed, the large
amount of identification data required and the
memory needed for the storage of the model
parameters. Previous studies have indicated the
potential of neural network techniques to provide an
alternative to classical models [2,3]. This paper
proposes a new general approach to model
hysteresis with feed-forward neural networks and
compares this new technique with widely used
classical approaches. Since the authors work in the
area of magnetic hysteresis, the presented techniques
are illustrated with results for soft ferromagnetic
SiFe laminated steel, used in electrical motors and
transformers. The application area includes the
CAD-design of such devices.
     The paper is organized as follows. Section 2
describes the major properties of hysteresis and

focuses on rate-independent hysteresis. The widely
used classical Preisach model of hysteresis and its
limitations are outlined in section 3. The newly
proposed neural network hysteresis model is
described in section 4 and experimentally verified in
section 5. Section 6 summarizes the main results.

2   Hysteresis: description and
properties
The hysteresis transducer, introduced in section 1,
can be considered as a nonlinear dynamic system
with input uk, state xk and output yk, all at time point
k, in discrete representation. Besides nonlinearity, a
hysteresis transducer often exhibits saturation. Only
scalar hysteresis systems are considered, thus u, x,
and y are scalars. The mathematical description of
such a system is:

xk = g(xk – 1, u k – 1)                        (1a)
yk = h(xk, uk),                               (1b)

where g and h are nonlinear functions. The input-
state equation (1a) is a dynamic relation, thus
including memory, since the calculation of the
current system state xk requires the knowledge of the
state xk – 1 at the previous time step. The state-output
equation (1b), on the other side, is a static,
memoryless relation, as the complete input history is
included in the current state xk through (1a). In the
context of hysteretic systems, xk is the memory state
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of the system at the time point k, in the sense of the
values of a set of system parameters that contains
sufficient information to determine the output yk,
when the input uk is known [4].
     The above discussion could suggest that a good
hysteresis model should take into account the
complete input history starting from k = 0. However,
in the case of hysteresis, many experiments have
shown that only small parts of the input history are
relevant for the current memory state xk [1]. The
determination of the relevant part of the input
history is detailed below.

2.1 Rate-independent hysteresis
An important class of hysteresis phenomena is the
case of rate-independent hysteresis. This type of
hysteresis, also called quasi-static hysteresis, occurs
when the rate of change of the input is so low that it
can be neglected and thus does not influence the
output.
     For a rate-independent hysteresis system, the
memory state xk and the output yk depend only on
the extreme (minimum and maximum) values of the
input uk, reached in the past, but not on the
intermediate values. The relevant part of the input
history is thus the sequence of extreme input values
[1]. Fig.1 illustrates this property: Fig.1a shows two
different inputs that exhibit an identical sequence of
extreme input values. The resulting input–output
diagrams in Fig.1b are identical as well. This
property has been confirmed by experiments with
hysteresis systems with a very low input rate of
change, for example in the case of magnetization of
ferromagnetic materials at very low frequency.

2.2 Wiping-out property
Further reduction of the relevant part of the input
history is based on the wiping-out or deletion
property of hysteresis, illustrated in Fig.2.
Experiments have shown that extreme input values
are deleted from the relevant input history when
surpassed by larger input values [1]. In Fig.2, when
the input changes from point 1 to point 5, cycling
between the extreme values at point 2 and 4, and 3
and 5, a major hysteresis loop is formed. During the
input change from point 6 to point 8, a minor loop is
traced. When the minor loop closes at point 9 and
the input rises further to point 10, the effect on the
output is exactly the same as when the input rises
monotonically from point 5 to point 10. When the
input exceeds the last maximum at point 6, the
maximum  at  point 6  and  the minimum  at  point 7,
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Fig.1: Rate-independent hysteresis: (a) different input sequences
with identical extreme values; (b) resulting identical input-

output trajectories
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Fig.2: Wiping-out (deletion) property of rate-independent
hysteresis: (a) input sequence and corresponding extreme

values; (b) input-output trajectory

which determine the minor loop, are evaded from
memory. The further evolution of the output is as if
the minor loop never existed.
     In conclusion, the relevant part of the input
history at each time point k consists of exactly one
stored extreme input value extr

ku , i.e. the last extreme
value, kept in memory. This value can be easily
determined from the (known) input history, as
illustrated in Fig.2 [4].
     Combining all results, the hysteretic system can
be presented as:

( )extr
k

extr
kkk yuufy ,,1= ,                    (2)

with f1 a nonlinear function of three variables and
extr
ky  the output value corresponding to extr

ku .
Comparing with (1), it is clear that the memory state
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Fig.3: Congruency property of rate-independent hysteresis

of the system can be represented by the two
parameters extr

ku  and extr
ky , known at each time point

k. The task of the hysteresis model is to determine
the function f1 and identify its parameters based on
measurements.

2.3 Congruency property
Further simplification of (2) can be achieved taking
into account the congruency property of minor
loops, which is approximately valid for many soft
magnetic materials. The congruency property states
that minor loops, formed when the input is cycled
between two identical extreme values, are
congruent, independent of the mean output level at
which they are situated, see Fig.3 [1]. The hysteretic
system can thus be presented as:

( )extr
kk

extr
kk uufyy ,2+= ,                   (3)

with f2 a nonlinear function of two variables. The
function f2 is easier to identify than f1 and would
thus yield a simpler hysteresis model. However,
using (3) instead of (2) would result in reduced
accuracy for materials that exhibit minor loops
significantly deviating from congruency.
     In the following, the possibilities for the
identification of the functions f1 and f2 are discussed.

3   Preisach hysteresis model
In order to allow a comparison between the classical
modelling techniques and the newly proposed neural
network method, the widely used Preisach hysteresis
model is described below.
     The Preisach model is a phenomenological
hysteresis model used mainly in magnetism, aiming
at approximating the macroscopic hysteresis
behaviour of ferromagnetic materials. The model is
constructed as a superposition of elementary
rectangular  Preisach  hysteresis  operators  γαβ  with

Fig.4: Elementary Preisach hysteresis operator
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Fig.5: First order reversal curves from various starting points up
to saturation: (a) ascending curves; (b) descending curves

up-switching field α and down-switching field β
(Fig.4) [1]. Each operator yields +1 or –1 depending
on its memory state (determined from the input
history) and the current input. A weight function
µ(α,β), called the Preisach distribution function, is
used for the superposition of all Preisach operators
with different values of α and β. It can be proven [1]
that the resulting classical Preisach model describes
both major and minor loops and obeys the wiping-
out and congruency properties. Besides, the model
can also be presented as:

( )k
extr
k

extr
kk uuEvyyy ,=−=∆ ,              (4)

with ( )k
extr
k uuEv ,  the Everett function [5]. The

Preisach distribution function is the second
derivative of the Everett function. Comparing (3)
and (4), it is clear that the function f2 can be directly
derived from the Everett function Ev. The classical
Preisach model is thus a model of the type of Eq.
(3).
     The identification of the classical Preisach model
is often carried out by the measurement of the so-
called first order reversal curves up to saturation
(Fig.5). Assuming that the congruency property
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holds, these curves yield the value of ( )k
extr
k uuEv ,

for all possible combinations of extr
ku  and ku .

     Attempts have been made to relax the
congruency property of the classical Preisach model,
since many hysteresis systems deviate significantly
from this property. However, no model exists today
that approximates the general relation (2). The
noncongruent Preisach models all assume a
predetermined dependence of the width of the minor
loops on the mean output level [6] and are thus valid
for certain types of hysteretic materials only.
     Concluding, the practical use of the Preisach
model requires a large amount of memory to store
the Everett function, consisting of the model
parameters. Besides, an accurate identification of
these parameters requires a dense set of reversal
curves, hence a large amount of measurement data.
The deviation of real materials from the congruency
property limits the accuracy of the Preisach model.

4   Hysteresis modelling with feed-
forward neural networks
The general description of hysteresis, developed in
section 2, Eqs. (2) and (3), reduces the problem of
hysteresis modelling to the identification of
functions like f1 and f2. A feed-forward neural
network (FFNN) from the multilayer perceptron
type (MLP) can be used to accomplish this task, as it
is proven that such a network, with at least one
hidden layer, can approximate any smooth nonlinear
function of an arbitrary number of variables with
arbitrary accuracy [7]. In the context of description
of hysteresis as a dynamic system in (1a) and (1b),
the FFNN, static in nature, can be used to describe
the memoryless state-output relation (1b) [4]. The
state xk of the system should then be determined
beforehand by some other algorithm. Eqs. (2) and
(3) show that this is possible in the case of rate-
independent hysteresis.
     An arbitrary accurate hysteresis model, strictly
obeying the wiping-out and congruency properties,
can thus be constructed based on (3), whereby the
nonlinear function f2 is determined by a feed-
forward neural network (network 1) with two inputs:

ku  and extr
ku  (Fig.6). The network input extr

ku  can be
derived at each time point as outlined in section 2. A
possible network training set consists of a selection
of ascending and descending first order reversal
curves up to saturation (Fig.5). Indeed, such a
training set contains sufficient information about the
sought function f2. Any other training set containing
similar information can be used as well.

Fig.6: Congruent loops neural network model (network 1)

Fig.7: Noncongruent loops neural network model (network 2)

     A hysteresis model allowing for noncongruent
minor loops can be constructed based on (2).
However, a more convenient presentation,
equivalent to (2), is:

( )extr
k

extr
kk

extr
kk yuufyy ,,3+= ,               (5)

with f3 a nonlinear function of three variables. The
function f3 is determined by a FFNN (network 2)
with three inputs: ku , extr

ku  and extr
ky , known at

each time point (Fig.7). The network training set
consists of much more data than for the model with
congruent loops, as sufficient information about the
function f3 should be available for all possible
combinations of the three network inputs. The
following sets of excitation patterns could be used to
provide detailed training data: symmetrical major
loops, first order reversals based on the symmetrical
major loops, minor loops, etc. The model with
network 2 (Fig.7) is a more general representation of
hysteresis than the noncongruent Preisach models,
mentioned in section 3. Indeed, it can describe
arbitrary variations of the width of the minor loops
with the output level, thus accurately fitting the
experimental results for all types of hysteresis
systems.
     Note the similarity between (5) and (2). For
systems that sufficiently approximate the
congruency property, f3 will be only slightly
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dependent on extr
ky , thus almost identical to f2. In

this case the simpler model with network 1 (Fig.6)
can be used instead. When very high accuracy is
required, the model with network 2 (Fig.7) should
be employed and much more training data should be
provided. In this context, the presented approach
allows the easy adaptation of the model complexity
to the required accuracy for the application.

5 Experimental verification
The proposed technique is applied to the modelling
of quasi-static magnetic hysteresis in a typical SiFe
steel lamination. The input u of the hysteresis
system is then the magnetic field strength H (A/m)
and the output y is the magnetic induction B (T). The
network is trained using the Levenberg-Marquardt
training algorithm [7]. The purpose is to show that
the technique yields accurate results and to compare
it with the Preisach approach. It is known that
optimization of the network structure and training
(number of hidden layers, number of neurons,
advanced training techniques such as early stopping,
weight decay, etc.) can improve the generalization
capability of the network and thus reduce the
required amount of training data for an accurate
prediction [7]. However, these aspects fall beyond
the scope of this paper.
     Firstly, the equivalency of the proposed approach
with the classical Preisach model is verified. The
training and test sets for the congruent loops model
with network 1 (Fig.6) were generated by the
Preisach model using an experimentally determined
Everett function [4]. The network, with 2 hidden
layers and 10 neurons in each hidden layer, was
trained for 1000 epochs (iterations) with a set of first
order reversal curves up to saturation (Fig.5). The
results for a test set not used during training (Fig.8a)
are presented in Fig.8b. The prediction accuracy of
the neural network is excellent and shows the
equivalency with the Preisach model. The advantage
of the neural network model is that the storage of the
network parameters (structure and weights) requires
much less memory than the storage of the Everett
function. Besides, the number of reversal curves
used for the training set presented here is about 20
times less than the number of curves required for
accurate identification of the Everett function.
Moreover, the prediction of new hysteresis loops
after training is very fast.
     Secondly, the performance of the congruent
loops model with network 1 (Fig.6) is tested for a
material that does not obey the congruency property
with  sufficient  accuracy.   The  first  order  reversal
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Fig.8: Comparison between congruent loops neural network
model (network 1) and classical Preisach model for FeSi steel:

(a) input history; (b) input-output trajectory
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Fig.9: Comparison between congruent loops neural network
model (network 1) and measurements for FeSi steel: (a)

symmetrical major loop for medium induction level; (b) minor
loop situated at low induction level

curves up to saturation were measured and used
directly as training data for the network. The
network structure is the same as above. This method
yields poor results in the absence of congruency,
especially when calculating major loops for low and
medium induction levels and minor loops situated at
low induction levels. To improve the results,
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symmetrical major loops for different inductions are
added to the training set. For a subset of the training
set, each input value will thus lead to two different
target values, one derived from the first order
reversal curves and the other from the symmetrical
major loops. After training, the network will yield
approximately the mean value of the two target
values when an input from this subset is presented.
The noncongruency of the material is thus averaged
out. Fig.9 shows the results for two measured test
sets. The accuracy is good, but less than in the case
of Fig.8 due to the deviation of the material from
congruency. However, the model still does not
require large amounts of storage capacity or
measurement data and presents a practical and
accurate approach to hysteresis modelling. The
accuracy can be further increased using the
noncongruent loops model with network 2 (Fig.7),
along with a much more extended set of
measurement data. As mentioned above, the model
complexity can be adapted to the requirements of
the application.

6 Conclusions
A new rate-independent hysteresis model was
presented, based on the nonlinear function
approximation capabilities of feed-forward neural
networks. The proposed general approach to
hysteresis modelling consists of two steps,
performed at each time point. Firstly, the values of
the set of parameters, determining the current
memory state of the hysteresis system, are
calculated, based on the input and output history. In
the case of rate independent hysteresis, these
parameters are the last relevant extreme input value
and the corresponding output value. Secondly, the
memoryless relation between magnetic state and
system output is approximated by a feed-forward
neural network. The model obeys experimentally
observed hysteresis properties such as the wiping-
out property and the congruency property. The
proposed technique is verified by experiments.
     Compared to the classical Preisach model
approach, the new model requires less memory and
less training data. The accuracy is as good as for the
congruent loops classical Preisach model. An
approach is presented to relax the congruency
property of the model and thus yield higher accuracy

for hysteresis systems that do not approximate this
property sufficiently well. The model yields a
practical approach to the handling of hysteresis
phenomena, as standard neural network techniques
are used.
     Further research will focus on the extension of
the model to vector hysteresis systems, especially
important in magnetics, as well as on the inclusion
of dynamic and temperature effects. The
generalization capability of the network will be
investigated in more details.

Acknowledgement:
This work was supported financially by the GOA-
project 99-200/4, by the research project No
39042099 of FWO-Vlaanderen, by the STWW-
project IWT 980357 and by the IUAP project
120C1597. One of the authors (Luc Dupré) is a
postdoctoral researcher of FWO-Vlaanderen.

References:
[1] I. D. Mayergoyz, Mathematical Models of

Hysteresis, Springer, Berlin, 1991.
[2] J.-D. Wei, C.-T. Sun, Constructing Hysteretic

Memory in Neural Networks, IEEE Transactions
on Systems, Man and Cybernetics – Part B:
Cybernetics, Vol.30, No.4, 2000, pp. 601-609.

[3] C. Serpico, C. Visone, Magnetic Hysteresis
Modelling via Feed-Forward Neural Networks,
IEEE Transactions on Magnetics, Vol.34, No.3,
1998, pp. 623-628.

[4] D. Makaveev, L. Dupré, M. De Wulf, J.
Melkebeek, Modelling of Quasi-Static Magnetic
Hysteresis with Feed-Forward Neural Networks,
Journal of Applied Physics, Vol.89, No.11, 2001,
pp. 6737-6739.

[5] D. Everett, A General Approach to Hysteresis –
part 4. An Alternative Formulation of the
Domain Model, Transactions Faraday Society,
Vol.51, 1955, pp. 1551-1557

[6] E. Della Torre, Existence of Magnetization-
Dependent Preisach Models, IEEE Transactions
on Magnetics, Vol.27, No.4, 1991, pp. 3697-
3699.

[7] C. M. Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, Oxford,
1995.


