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Abstract: - This paper presents an alternative approach to time series forecasting, through use of 
artificial neural networks (ANNs), a relatively new concept in hydrological research. Box and Jenkins 
ARMAX (autoregressive moving average with exogenous inputs) models have been widely used in 
modeling various time series with satisfactory results.  This study shows that ANNs can produce 
comparable, to ARMAX, and in some cases even, better forecasting results, especially for long-term 
prediction.  By learning, through training, the underlying mapping of the time series, an ANN provides 
robust forecasting.  The results obtained using real-life data from a catchment in Zambia suggest ANNs 
could be used as an efficient and effective models in forecasting hydrological variables such as river 
discharge, river stage, and runoff. 

Key-Words: - Artificial Neural Networks, feedforward, ARMAX, alternative approach, training, mapping, 
hydrologic(al), forecasting. 
 

1   Introduction 
Man is in constant pursuit of taming or at least being 
in “control” of naturally occurring phenomena so as 
to harness them to his advantage.  This control is 
often realized when he is able to predict events with 
reasonable accuracy, thereby being able to plan in 
advance what course of action to take.  In hydrology 
forecasting of one process output or the other such 
as runoff, river discharge, and river stage is fairly 
commonplace.  In cases where the interest is in the 
understanding of the underlying hydrological 
processes conceptual models are the best, however, 
there are many practical situations such as 
streamflow forecasting where the interest is in 
making accurate predictions at specific watershed 
locations.  
     In the latter situation, which is the subject of this 
paper, a hydrologist may prefer not to expend the 
time and effort required to develop and implement a 
conceptual model and instead use a simpler system 
theoretic model.  In the system theoretic approach, 
difference or differential equation models are used to 
identify a direct mapping between the inputs and 
outputs without detailed consideration of the internal 
structure of the physical processes [1, 2].  In this 
paper the system theoretic models used are the 
artificial neural networks, ANNs.  ANN modeling is 
a technique that compiles and refines the main 

advantages of the different conventional approaches, 
generally intended for systems behavior forecasting. 
In view of Kolmogorov’s theorem [3] and 
Funahashi’s work [4] it is now universally held that 
a three layered ANN using sigmoid transfer 
functions can serve as any continuous function 
approximator for as long as a sufficient number of 
neurons are used.  River discharge time series as 
measured at the Kafue Hook bridge (KHB) in the 
Kafue sub-catchment in Zambia was presented to 
several three-layer feedforward – backpropagation 
(FF-BP) ANNs for training.  The KHB gauging 
station captures the main inflow contribution of the 
Kafue River to a series of three reservoirs; the 
Itezhi-tezhi, (Itezhi, man-made), the Kafue Flats 
(NR, natural) and the Kafue Gorge (KafG, man-
made) in that order, see Figure 1.  
     Hydroelectric power generated at KafG is the 
major reason for the existence two man-made 
reservoirs; at least 60% of Zambia’s electric energy 
is produced here.  But the storage in these reservoirs 
has to account for irrigation and water supply needs 
thereby rendering them multipurpose in their 
operation.  As such it is imperative to devise 
effective and efficient reservoir management and 
operation policies to meet the competing needs.  To 
do this it is of utmost importance that one is able to 
predict, with reasonable certainty and accuracy, the 
expected inflows over a certain time horizon with 
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minimum consideration of the details of the 
interacting processes.  Traditionally, the linear time 
series models such as ARMAX have been 
commonly used in such situations because they are 
relatively easy to develop and implement, and they 
have been found to give satisfactory predictions in 
many applications  

[5, 6].  But in recent years ANNs have been gaining 
some ground in being used in the water resources 
studies [7, 1, 8].  To assess and evaluate the 
performance of the ANNs that are selected they are 
compared to best performing ARMAX models on 
the basis of appropriate performance criteria. 
 

 

 

Fig. 1:   Kafue sub-catchment study area showing the main features 

 
 

2 Data series partitioning for 
ANN training 

The measured discharge time series was almost 20 
years long of daily averages.  The inputs and output 
series were partitioned in three pattern sets for 
training, validation and testing in such a way that 
some earlier, middle and recent data points were 
included in each set.  This should remove or rather 
to minimize any bias that may be inherent in the 
series due to long-term weather changes.  For 
instance, it may be that the earlier years are 
generally wetter than the recent years or the other 
way round.  By sampling several disjointed 
segments of data from the original series we present 
the ANN with many possible varied patterns during 
training.  By partitioning the data series this way 
some impartiality in evaluating the prediction 
performance is built-in, in that data from “all” 
periods (earlier, middle and later sections of the 
series) are used for training (modeling), testing 
(prediction), and validation. All these sets are of the 
form {x1(t), x2(t),…, xp(t), d(t)}, in which xi(t), are 
the inputs while d(t) is the desired output -present 
Inflow(t). Both the inputs and output series were 
then normalized (to range from 0 to 1) by dividing 
each variable by the maximum value hitherto 
obtained.  From the correlation matrix of possible 
exogenous inputs, rainfall and evaporation measured 
from nearby meteorological stations it was clear that 

their influence was negligible, but there were very 
strong correlation amongst the flow at time t and the 
recent past flows at t-1, t-2 and t-3.  The output, flow 
at t, Y(t) was assumed to be related to the past flows 
Y(t-i) and since it is also known that ANNs are 
generally nonlinear we can write the general 
nonlinear model structure as 

 
        Y(t) = fnon(Y(t-1),· · · ,Y(t-na)) + e(t)                  (1) 
 
where fnon( ) is the unknown nonlinear mapping 
function, e(t) is the unknown mapping error (to be 
minimized), and na is the (unknown) number of past 
outputs contributing to the present output.  It was 
decided to work with three layer (Input layer:1 
Hidden layer: Output layer) FF-BP ANNs, owing to 
the well known universal approximation property in 
neural network research that it is capable of mapping 
and generalizing any continuous mathematical 
function.  Figure 2 shows the general configuration 
of a three layer feed forward ANN.  Note that there 
is no interconnection between neurons within the 
same layer, rather neurons in one layer are allowed 
to have interconnections with those in previous or 
forward layers. Such an ANN model structure is 
represented by the notation ANN[na, nh, no ], where 
na is the number of nodes in the input layer, and is 
the same na as in equation (1), nh is the number of 
nodes in the hidden, and no is the number of nodes in 
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the output layer (no = 1 in our case).  Since no = 1 is 
and fixed the notation is further abbreviated to 
ANN[nc, nh].  Input training sets consisting of     
{Y(t-1)}, {Y(t-1), Y(t-2)}, and {Y(t-1), Y(t-2), Y(t-3)} 
combinations were presented 

 
Fig. 2:  Three-layer feed forward network 
 
 
to a host of three layer FF-BP ANNs for training, 
using MATLAB routines.  For each combination of 
input patterns the number of neurons in the hidden 
layer was varied from 2 to 10 while the pertinent 
global ‘goodness-of-fit’ statistics for each 
satisfactorily trained network were noted. The 
training method used is the Levenberg-Marquardt 
(L-M) in which an early stopping criteria is 
incorporated to safeguard against overfitting.  In 
each step in the training phase, the network is 
required to predict the next value in the time 
sequence.  The error between the value predicted (by 
the network) and the value actually observed is 
calculated and propagated backwards along the 
feedforward connections.  During back-propagation 
the network weights are modified by minimizing the 
error between a target and computed outputs.  The 
objective of weight modification is to find a set of 
weights (weight matrix) that enables the trained 
ANN to approximate the target output as closely as 
is desired.  This mode of training is what is known 
as supervised or teacher-forcing. 
    In the absence of one definitive evaluation test, a 
multi-criteria assessment was used to select a best-fit 
network for further tests: 1) The ratio of the standard 
error of estimate (Se) to the standard deviation (S) of 
the observed signal, flow, (Se/S). 
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Se is the unexplained variance and is the standard 
error of estimate [9]; ν = degrees of freedom, and is 
the number of observations in the training set minus 
the number of network weights; yoi and ypi are 
observed and predicted values of output, 
respectively.  Se/S, also called the noise-to-signal 
ratio indicates the degree to which noise hides the 
information [10]. The smaller the ratio the better the 
model can provide accurate predictions of the 
modeled signal. 2) The the percent volume error 
(%VE), the smaller this is the better is the 
approximation of observed and predicted volumes 
over the period in consideration. 3) Then the linear 
regression correlation between the observed and 
simulated flows (CORR), the higher the correlation 
certainly the better the general approximation. 
Where no optimal architecture emerged, the A 
information criterion (AIC) and/or its variant the B 
information criterion (BIC) were used to 
discriminate.  
 
    AIC = m*ln (RMSE) + 2npar                (3) 
 
    BIC = m*ln (RMSE) + npar ln(m)         (4) 
 
Where m is the number of input-output patterns, and 
npar is the number of parameters to be identified.  
Since the AIC and BIC statistics penalize the model 
for having more parameters they therefore tend to 
select more parsimonious models [1].  
 

3   Results and discussion 
From  the 21 initial ANN models, with varying 
inputs, that were trained, a preliminary 9 were short-
listed based mainly on Se/S-ratio and %VE values 
that were obtained for Testing and Validation. 
Figure 3 shows the comparison of Se/S-ratios (bars) 
along with %VE (lines) for some of the trained 
models.  The input set for each column of three 
models is also included in the top row(s) of the 
Figure: from which, using the same criteria as 
above, all the models but the first three were 
selected, that is six of them. 
    These models were first tested for simulating the 
data series segments that were not used for training; 
they all performed well wit respect to the mean 
squared error, MSE and the coefficient of regression, 
R which were comparable. It is envisaged that the 
successful model(s) is (are) to be used for 
forecasting the Kafue Hook bridge inflows to be 
used in determining reservoir operation policies.  To 
do this, all the 6 models were tested for their 
prediction capabilities at 1day, 10 days, 50 days and 
100 days-ahead forecasting horizons, evaluating 
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them using MSE and R.  In multi-step prediction, we 
append the previously predicted values to our input 
series and use these ‘new’ values to predict future 
values. The best three models were retained as 
candidates that could be used for actual prediction, 
namely M3-[3,5], M2-[2,2] and M2-[2,8]; they are 
listed as 1, 2, and 3 in Table1. 
    Figures 4 show the 1 d- and 100 d-ahead 
comparisons of forecasts with observed inflow 
together with their respective regression correlation 
plots. By visual inspection of Figures 4 it can be 
seen that the forecasts closely match the observed 
data points despite the slight departure in the initial 
stages of the 100 d-ahead plot.  It can be concluded 
that the selected ANN(s), which may not necessarily 
be of optimal architecture, seem to have captured the 

general underlying relationship between the current 
inflow and the recent past flows. 
 
 

4   Comparison with ARMAX models 
ANNs are a relatively new modeling concept in 
general and even newer in hydrological modeling.  It 
is therefore appropriate to compare the performance 
of ANNs to “traditionally” used approaches: [11] 
talking of ANNs note, “These new technologies, 
however, require evaluation against conventional 
models and statistical tools, in order to determine 
their relative performance…” To evaluate the 
selected ANNs further for their forecasting 
capabilities they are compared with ARMAX 
models.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  Comparison of Se/S-ratios for Training, Validation and Testing along with %VE values 
 

 
     Figure 4a:  1 d-ahead inflow obtained by M3-[3,5]                              Figure 4b:  Regression of the 

                       results of Fig. 4a 
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          Figure 4c:  100 d-ahead inflow obtained by M3-[3,5]                         Figure 4d:  Regression of the 

               results of (Fig. 4c) 
 
In general, the ARMAX model is expected to 
simulate very well the behavior of system whose 
input-output characteristics are approximately linear. 
ARMAX models have been widely used for 
watershed modeling because of the ease with which 
they can be developed [12]; and they have been 
found to provide satisfactory predictions in many 
applications [5].  The model structure is represented 
by the notation ARMAX[na, nb, nc],  where na, nb, 
and nc are the (unknown) number (order) of past 
outputs, inputs, and error terms respectively.  The 
orders (na, nb, and nc) and the model parameters 
were estimated using the MATLAB Identification 
Toolbox. 
    For consistence it was decided to use the MSE 
and R as the evaluation criteria. The selection of the 
best models is based on how these test statistics 
faired in their prediction mode at the same 
prediction horizons as used for ANNs, that is at 1 
day, 10 days, 50 days and 100 days-ahead 

forecasting horizons. Here again only the best three 
models were retained as candidates; these being 
ARMAX[2, 0, 0], ARMAX[3, 0, 0], and 
ARMAX[1, 0, 3]. The performance statistics of 
these models together with those of the ANNs 
selected earlier are summarized in Table 1. Figures 5 
show the comparisons of 1 d-ahead forecasts given 
by ARMAX[2, 0, 0] with observed inflow.  Visual 
inspection of Figures 5 shows that the forecasts at 1 
d-ahead are consistently overestimated and it would 
not get any better as the forecasting horizons 
increase. This clearly gives inferior forecasts 
compared with what was obtained by ANNs. The 
statistics of Table 1 further show this lackluster 
performance of ARMAX models in this particular 
case: the R values show a significant reduction for 
successive multi-step forecasts and there is even a 
considerably large increase in the MSE for each 
higher step of the forecasting horizons considered.  

 
Figure 5a:  1 d-ahead inflows obtained by ARMAX[2,0,0]       Figure 5b:  Regression of the 

      results of (Fig. 5a) 
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Tab le  1 :   S t a t i s t i c s  o f  t h r ee  bes t  pe r fo rming  (p red ic t ion )  ANN and  ARMAX mode l s  
 

Model Inputs MSE & R for different prediction horizons 

 Khfl 
(t-1) 

Khfl 
(t-2) 

Khfl 
(t-3) 

 

1 d-ahead 
MSE        R 

10 d-ahead 
MSE          R 

50 d-ahead 
MSE            R 

100 d-ahead 
MSE          R 

ANN[3,5,1] xx xx xx 76.22 0.999 76.60 0.999 172.22 0.997 539.03 0.991 

ANN[2,2,1] xx xx  78.46 0.999 79.22 0.999 370.31 0.994 1954.80 0.967 

ANN[2,8,1] xx xx    77.29 0.999 78.08 0.999 444.71 0.992 2702.61 0.955 

ARMAX[2,0,0] xx xx  219.30 0.998 5643.30 0.966 37013 0.802 75306 0.690 

ARXMA[3,0,0] xx xx xx 222.57 0.998 5630.20 0.967 37272 0.802 76930 0.692 

ARMAX[1,0,3] xx   231.80 0.998 5724.90 0.967 37555 0.802 74014 0.692 

 
 

5   Conclusion  
In all cases presented in this paper the ANN 
models generated better global “goodness-of-fit 
statistics” than ARMAX models as the prediction 
horizon increased.  This is because the latter are 
sensitive to noise, and since they build their 
forecasts on previous observations, thus is only 
good for short term forecasting.  An ANN (with a 
hidden layer) bases its forecasting on the 
approximated (learnt) underlying mapping. Hence 
it is more robust and better in the case of long 
term forecasting [13].  But just as [1] noted also 
the ANN approach presented here does not 
provide models that have physically realistic 
components and parameters... However, the 
results suggest that the ANN may provide a 
superior alternative to the ARMAX time series 
approach for developing input-output simulation 
and forecasting models.  It, therefore, can be seen 
that ANNs are a viable alternative and/or 
complementary approach to conventional 
watershed modeling techniques. Especially in 
cases where the main interest is in making 
accurate predictions at specific watershed 
locations rather than in understanding the 
hydrologic processes.  Notwithstanding the time 
taken in training an ANN model, the benefit of 
robust long-term forecasting would make it a 
favored choice over an ARMAX model, 
especially in long term planning such as in 
reservoir operations. 
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