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Abstract: - Expert system decision making has proved effective in guiding the process of automatic transformation 
of sequential legacy codes to parallel equivalents for execution on multiprocessor computer systems. Parallelization 
decisions normally taken by human experts are replaced by those influenced by domain-specific and ‘history’ case-
based knowledge. However, the information obtained from the knowledge base can be both limited and unreliable, 
reducing the effectiveness of the decision making process. A time-consuming iterative trial-and-error process is 
required in order to find the transformation to obtain the best possible performance results. This paper introduces a 
technique which employs a genetic algorithm to guide the process of performance-related solution-finding, while 
reducing the penalties inherent with exhaustive testing. 
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1 Introduction 
The challenge of transforming legacy codes to an 
equivalent form for execution on parallel computer 
systems has generated a considerable amount of 
research [1][2]. The conversion process requires the 
selection and application of a set of transformations 
to eliminate dependencies and generate efficient data 
distributions. The human expert makes 
transformation decisions to achieve the goal of 
producing a performance gain of parallel execution 
over sequential execution. A system which emulates 
this decision making process is required to replace 
the human expert. This can allow novice users to 
produce efficient parallel code. Artificial Intelligent 
techniques can be used to guide the automatic 
parallelization process via informed transformational 
decisions. For example, the choice of an appropriate 
data partitioning algorithm can highlight the 
effectiveness of the expert system. 
 The KaTT system [3][4][5] consists of a suite of 
transformation and code restructuring tools 
controlled by a sequence of expert system guidance 
tools. An Input Handler accepts the sequential source 
code and converts to an intermediate form; a 

hierarchical graph which describes the syntactical 
structure of the code. This is then fed to the 
Transformation stage, which restructures the graph in 
an attempt to remove or reduce potential obstacles to 
the production of a parallel solution. The semantic 
meaning of the original code remains consistent 
throughout all transformations. 
 The Generation and Evaluation Stages are then used 
to convert the transformed graph to a parallel form 
(known as the potentially parallel graph) and create a 
set of parallel processes. An Expert system controller 
is used to influence transformation and data 
distribution decisions. The system uses a knowledge 
base built from a number of specific knowledge 
sources, including platform-specific knowledge, 
source code characteristics, performance statistics 
and case-based parallelization strategy records. 
 

2   Knowledge Based decisions 
KaTT uses the CLIPS Expert System to utilize the 
information from the available knowledge sources 
during each stage of Generation and Evaluation. The 
expert system initially makes evaluations of the code 
based on estimation results provided by a Program 



Modeler. This guides the system to compute-
intensive areas of the code for further analysis. 
Sequential performance analysis allows the expert 
system to identify exactly areas of the sequential 
code upon which to concentrate data partitioning 
transformations. 
 A Data Distribution tool performs the main 
partitioning transformations. Initial decisions for 
distribution are based on the analysis results 
previously obtained, such as sequential performance 
measurements, the occurrence of partitioning 
obstacles such as data dependencies and target 
platform considerations. Parallel execution 
performance results are used by the expert system to 
control continual improvement attempts and 
determine when to terminate the improvement cycle. 
 At the data distribution stage the system has enough 
information to compile a list of possible distributions 
for the sequential code. Although there are a limited 
number of distribution solutions, there are many 
more optimization techniques which can be applied 
in an attempt to improve the solution and find the 
most effective configuration. Therefore, a large list of 
potential transformation solutions can require testing. 
 Testing each potential solution requires applying 
each transformation configuration to the sequential 
code in order to find the most suitable, i.e. the 
transformation which provides the best performance 
results when executed on the target parallel platform. 
The goal is to find the optimum solution among the 
list of suitable solutions. A “best-so-far” process is 
employed to keep a record of the most effective 
transformation during the improvement cycle. 
 

3  Improvements to the Process 
The iterative methods applied within the 
improvement cycle provide a method for finding the 
optimal transformation solution to apply to the 
original sequential code. However, a major 
disadvantage can be identified. 
 Given a sequential code with a large number of 
possible transformations, the problem lies in finding 
the most effective transformation in a time-frame 
acceptable to the user of the system. The 
improvement cycle may require a large number of 
iterations in order to ensure that the best performance 
has been found. The expert system provides guidance 
for the choice of optimization parameter values. 
However, it cannot dismiss possible solutions in the 
belief that the performance results will be poor. All 

potentially peformance-improving techniques must 
be applied. Testing one solution itself may take some 
time, therefore obtaining parallel performance 
statistics for many configurations can be considered 
unfeasible. 
 A process is required to reduce the potential volume 
of testing, while retaining the power to find the 
optimum solution for the problem. The problem in 
this context can be defined as: 
 
‘The transformation solution to apply to a given 
sequential legacy code which will produce a 
performance speedup when executed on a 
multiprocessor system’. 
 
One method is to use the ‘experience’ gained from a 
historical record of past parallelization cases [5]. This 
requires a database of optimum transformation 
solutions for a wide range of codes previously 
parallelized (by hand or using iterative methods). 
Each problem, and the associated most effective 
solution, are stored in the database along with the 
performance results obtained. It then may be possible 
to find a matching problem within the database, and 
use the previously recorded transformation. The 
stored performance results indicate the potential 
parallel execution performance which could be 
obtained by applying this transformation to the 
sequential code. 
 The database effectively becomes a knowledge base 
to supply satisfactory transformations quickly 
without the need to test for all possibilities. The 
pattern matching capabilities of modern Expert 
System shells make the creation of such a knowledge 
base within the system a possibility. 
 This method is effective for problem cases to which 
an associated solution exists within the Knowledge 
Base. However, there are further issues to address 
regarding the operation and effectiveness of this 
method. A knowledge base with a limited amount of 
cases may not contain any codes similar to the code 
under consideration and make this method 
unproductive. Furthermore, due to the complexity of 
structural programming languages, codes which are 
similar may exist in the knowledge base, but may not 
be similar enough to guarantee the effectiveness of 
the associated solution when applied to the sequential 
code. 
 Applying a degree of ‘fuzziness’ to the technique 
will enable matches to be made based on relevance to 
the original problem. If the current case matches a 



case in the knowledge base almost exactly, the 
relevance is high. As the degree of similarity between 
cases decreases, the measure of relevance decreases 
accordingly. 
 A reasonable solution can be found, although a low 
relevance factor can undermine the performance 
potential associated with the solution. Improvement 
is required to determine if this solution is indeed the 
most effective possible. An iterative improvement 
process may be required, thus removing any benefits 
gained from using the knowledge base technique. 
 Finding a relevance level which guarantees a single 
satisfactory match can be difficult. Depending on the 
size of the knowledge base, a range of possible 
matches can be returned. Given an effective 
combination of improvement, any of these 
transformation solutions could potentially yield the 
best possible performance results. An alternative to 
the iterative method is required to explore this area 
without incurring any time-consuming side effects. 
 An improvement to this process has been attempted 
by employing Case-Based Reasoning techniques for 
the selection of potential solutions and the 
application of an Evolutionary Algorithm to control 
the progress of applied improvements. Research is 
concentrated in the main areas of: 
 

1. Effective Case retrieval 
2. Solution transformation or improvement 

using an Evolutionary Algorithm 
3. Case Storing, to improve future searches. 

  
Various models of case retrievers such as ARCHIE 
[6] and DEJAVU [7] are used within the engineering 
design domain. The most appropriate method for the 
parallelization problem domain is that adopted in the 
framework of the generic tool CASETOOL [8]. 
 

4  Case-Based Selection 
During the Case-Based Reasoning process, searching 
is guided by previous problem-solving experience. 
These are stored as past cases, enabling solutions to 
the problems already solved to be retrieved rather 
than computed again. Within the problem domain of 
parallelization, cases contain characteristics which 
define the code. The associated transformation 
solution is stored along with performance results 
obtained during execution of the transformed parallel 
program. 

 A generic methodology for Case retrieval involving 
the following three steps is applied to this problem-
domain: 
 

1. Selection by Search Conditions: Selecting a 
set of cases after removing all loosely 
connected cases. 

2. Classification by Relevance: Classifying 
cases based on the degree of similarity of 
characteristics between the given situation 
and the selected cases. 

3. Classification by Performance: Classifying 
cases based on the past performance as a 
prediction mechanism for potential 
performance results for the given situation. 

 
The relevance of selected cases is based on the 
deviation of attribute values of cases from that of the 
current selection and the relative importance 
(weighting) of the attributes. The performance of 
cases with a higher relevance are “trusted” to a 
greater degree than those with a lesser relevance. 
 A Relevance Norm (R) is evaluated to represent the 
similarity between past cases and the present problem 
situation. The value R is the normalized weighted 
least square estimation of deviations [9]. The 
evaluation of R can be illustrated using the equation 
in Figure 1: 

 
Fig. 1  Fitness Function 

 
where v1 .. vn is the set of n attribute values of the past 
case, c1 .. cn the corresponding values of the current 
situation and w1 .. wn be the weights of these 
attributes. The variables ui and li are the upper and 
lower limits for the ith variable. The classification for 
values of R is domain dependent, and is determined 
by the Expert System base on in-built parallelization 
strategy rules. Cases which fall into reasonable  
system-defined classifications such as perfect or 
close can be considered for selection. 
 The characteristics of common compute-intensive 
areas of program code such as loops are stored in the 
knowledge base. Typical attributes or characteristics 
for loop cases describe the loop itself and statements 



within the loop body. The simplest type of loop (1 
dimensional, with literally declared bounds) can be 
described as: 
 

1-dimensional Loop (lb/ub) 
 
where lb and ub are the upper and lower bounds. 
 More complex (n-dimensional) loops can also be 
represented in the knowledge base, along with 
specific information such as loop body statement 
patterns for each level of nesting. For complex cases, 
relevance is a crucial factor in decisions regarding 
accuracy of matches. The performance of a selected 
case can suggest the potential performance of the 
current problem if the associated case-solution 
transformation has been applied. The relevance 
however, can affect the reliability of this solution and 
therefore that of achieving the potential performance. 
 It may be more rational to select a case with a higher 
relevance factor over one with lower relevance 
factor, even if the latter has a higher performance 
potential. Determining the ‘fitness’ of one solution 
over another solution can help allow the system to 
make this choice. Fitness can be described as a 
function of the relevance of the selected case and the 
performance of the associated solution. 
 Given the likelihood that a perfect match will not be 
retrieved from the knowledge base, the system must 
be capable of choosing between a number of 
possibilities, each with varying degrees of reliability. 
Simply choosing the fittest from a list of candidates 
may not ultimately yield the best results, for a 
number of reasons, e.g. 
 

1. The fittest solution may still require 
improvement. 

2. Improvements suggested by the expert 
system may be limited and/or misguided. 

 
Improvements performed on a less healthy solution 
may yield a better final result than that achieved by 
improving on the fittest. The use of an evolutionary 
algorithm enables a more explorative search to be 
performed. 
 

5  An  Evolutionary Algorithm 
Evolutionary techniques involve the use of computer-
based solving systems which use computational 
models of evolutionary processes as key elements in 
their design and implementation. The term 

Evolutionary Algorithm describes an iterative and 
stochastic process operating on a set of potential 
solutions to a given problem (known as the 
population). Such algorithms are applied to diverse 
application areas [10]. Genetic Algorithms [11] fall 
under the classification of Evolutionary Algorithms. 
They combine Darwinian theory of survival-of-the-
fittest and natural genetics to form a robust search 
mechanism. The adaptive nature of a genetic search 
simulates learning from the problem environment as 
the search progresses. Such learning guides the 
search technique to arrive at global optimal solutions. 
 Genetic Algorithms and Expert Systems have been 
effectively combined with numerical optimization 
techniques in a process called Interdigitation [12]. 
The genetic Algorithm is employed for global search 
while the expert system handles local searches for 
engineering design optimization problems. Hamada 
et al. [13] has developed a hybrid model for Genetic 
Algorithms and Knowledge-Based Systems for 
production planning in steel plants. 
 
5.1 Introducing the Genetic Algorithm 
The steps in the algorithm are illustrated in Figure 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The genetic algorithm 
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The fitness function for each selected case in the 
knowledge base is used initially to focus on the most 
potentially suitable candidates for improvement (the 
initial population). At the initial selection stage, a 
temporary population is created, containing the fittest 
individuals. Reproductive operators are applied to 
this population, and a new population is created. 
Finally, individuals of the original population are 
substituted by the newly created individuals. This 
replacement tries to keep the best individuals and 
keep the population size constant. The process is 
repeated until a certain termination criterion is 
achieved (usually after a given number of iterations). 
 The reproductive operators are applied in an attempt 
to improve on the current population while retaining 
the best characteristics of the fittest individuals. 
  
5.2 Applying this to Characteristics 
A transformation Solution contains the necessary 
information to guide the expert system and the data 
distribution tools to create the required parallel 
version of the sequential code. At the most basic 
level, this information will include Number of 
Processors to Use and Type of Data Distribution to 
Apply. Communication and Processor optimization 
parameters are also applied during transformation. 
 This leads to many slightly different possible 
transformations for each processor/distribution 
combination. There may be many candidates for 
initial selection, each with an associated fitness. For a 
required initial population of n solutions, picking the 
best n (those with highest fitness) from the candidate 
list may not be the best initialisation strategy.  
 Maintaining a level of diversity is important as the 
best solutions may be quite similar to each other. A 
limited set of potential improvements can then be 
produced during each generation of the new 
population. Tournament selection is used for initial 
seeding. This picks the best individuals from a 
randomly generated subset. 
 The selected individuals undergo a set of 
transformations as a result of reproductive operators. 
Crossover, or recombination is the first operator to be 
applied. One technique is two-parent crossover, in 
which Parent individuals are selected for 
combination, and offspring containing elements of 
both are produced. Mutation is then applied to the 
newly created offspring population in order to 
diversify the new population. The amount of 
mutation depends on the fitness of the parents. 

 At this stage the improved individuals must be re-
evaluated for fitness. The system cannot rely on 
previously stored information on performance of the 
new solution, so parallel profiling techniques are 
used. A new set of individuals are then selected to 
continue the process. The Termination criteria 
determine when to stop creating new generations, 
e.g. stop after a set number of generations. 
 
6  Future Work 
Initial results have been encouraging, using a limited 
knowledge base for this method. However, a full set 
of results using a larger knowledge base is currently 
being compiled and will be published in due course. 
These results will also be used to compare to the 
original KaTT system under the Expert System 
driven iterative search method. 
 The Expert system guidance has proven effective in 
eventually obtaining a program transformation to 
obtain the best possible performance results. Work is 
also on-going to implement this guidance within the 
actual Genetic Algorithm to help in selection, 
population reproductive and replacement decisions. 
This knowledge will be obtained through rigorous 
use of the system under various methods given 
differing circumstances. For example, the tournament 
method of initial selection may be effective for some 
problems, but an alternative method such as bias 
selection may be more effective for others. 
 Maintaining diversity is an issue which has 
warranted considerable research [14]. During the 
initial selection process, maintaining diversity over 
the problem space can be problematic. The expert 
system will attempt to ensure diversity is maintained 
at this stage and further subsequent selections. 
 The results for each successful implementation of 
the evolutionary technique are stored in the 
knowledge base. Along with this, further information 
is stored regarding the steps taken within the process. 
This information can be used to influence decisions 
during the Case selection process. For instance, the 
fitness of a stored case can be further influenced by 
the effectiveness of the Genetic Algorithm process to 
obtain the associated solution. Further environment-
base characteristics will also be introduced to 
influence the fitness of a solution. For example, 
different hardware platforms or processor topologies 
can produce different performance results for the 
same parallel transformation. Heterogeneous clusters 
exhibit varying processor speeds and communication 



or message-passing requirements not relevant to 
High Performance multiprocessor systems. 
 Memetic Algorithms [15] are an extension of 
Genetic Algorithms to include local search 
mechanisms such as the Hill-Climbing algorithm. 
Applied to the problem-domain of parallel 
transformations, the mutation operators will be 
heavier, giving a higher possibility of unfeasible 
solutions. The local search will improve the mutated 
solutions with the intention of arriving at the optimal 
solution much quicker than with standard Genetic 
Algorithm. Investigation is based on whether the 
introduction of local search heuristics may improve 
the process for this problem-domain. 

 
7 Conclusion 
The emulation of human expertise within the 
problem of automatic parallelization of legacy code 
requires the production of an efficient parallel code 
yielding a satisfactory performance improvement. 
The cost of time taken to produce this improvement 
must influence the measure of the effectiveness of a 
system undertaking this task. Current work is 
involved in reducing the time taken to produce 
efficient parallel versions of the sequential legacy 
codes, while maintaining or improving the quality of 
the final parallel code. Initial results show that 
improvements are possible. It is contemplated that 
combination of the expert system and expansion of 
current evolutionary techniques will further improve 
the solution-finding process in the current system. 
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