
An Evolutionary Algorithm to Improve Knowledge-Based
Decision-making for Automatic Parallelisation

P. J. P. MCMULLAN and B. MCCOLLUM

School of Computer Science
The Queen’s University of Belfast

Belfast BT7 1NN
NORTHERN IRELAND

Abstract: - Expert system decision making has proved effective in guiding the process of automatic transformation
of sequential legacy codes to parallel equivalents for execution on multiprocessor computer systems. Parallelization
decisions normally taken by human experts are replaced by those influenced by domain-specific and ‘history’ case-
based knowledge. However, the information obtained from the knowledge base can be both limited and unreliable,
reducing the effectiveness of the decision making process. A time-consuming iterative trial-and-error process is
required in order to find the transformation to obtain the best possible performance results. This paper introduces a
technique which employs a genetic algorithm to guide the process of performance-related solution-finding, while
reducing the penalties inherent with exhaustive testing.

Key-Words: - Automatic, Intelligent, Parallelisation, Distribution, Expert-Systems, Knowledge-Based,
Multiprocessor, Evolutionary-Algorithm, Genetic-Algorithm, Case-Based-Reasoning

1 Introduction
The challenge of transforming legacy codes to an
equivalent form for execution on parallel computer
systems has generated a considerable amount of
research [1][2]. The conversion process requires the
selection and application of a set of transformations
to eliminate dependencies and generate efficient data
distributions. The human expert makes
transformation decisions to achieve the goal of
producing a performance gain of parallel execution
over sequential execution. A system which emulates
this decision making process is required to replace
the human expert. This can allow novice users to
produce efficient parallel code. Artificial Intelligent
techniques can be used to guide the automatic
parallelization process via informed transformational
decisions. For example, the choice of an appropriate
data partitioning algorithm can highlight the
effectiveness of the expert system.
 The KaTT system [3][4][5] consists of a suite of
transformation and code restructuring tools
controlled by a sequence of expert system guidance
tools. An Input Handler accepts the sequential source
code and converts to an intermediate form; a

hierarchical graph which describes the syntactical
structure of the code. This is then fed to the
Transformation stage, which restructures the graph in
an attempt to remove or reduce potential obstacles to
the production of a parallel solution. The semantic
meaning of the original code remains consistent
throughout all transformations.
 The Generation and Evaluation Stages are then used
to convert the transformed graph to a parallel form
(known as the potentially parallel graph) and create a
set of parallel processes. An Expert system controller
is used to influence transformation and data
distribution decisions. The system uses a knowledge
base built from a number of specific knowledge
sources, including platform-specific knowledge,
source code characteristics, performance statistics
and case-based parallelization strategy records.

2 Knowledge Based decisions
KaTT uses the CLIPS Expert System to utilize the
information from the available knowledge sources
during each stage of Generation and Evaluation. The
expert system initially makes evaluations of the code
based on estimation results provided by a Program

Modeler. This guides the system to compute-
intensive areas of the code for further analysis.
Sequential performance analysis allows the expert
system to identify exactly areas of the sequential
code upon which to concentrate data partitioning
transformations.
 A Data Distribution tool performs the main
partitioning transformations. Initial decisions for
distribution are based on the analysis results
previously obtained, such as sequential performance
measurements, the occurrence of partitioning
obstacles such as data dependencies and target
platform considerations. Parallel execution
performance results are used by the expert system to
control continual improvement attempts and
determine when to terminate the improvement cycle.
 At the data distribution stage the system has enough
information to compile a list of possible distributions
for the sequential code. Although there are a limited
number of distribution solutions, there are many
more optimization techniques which can be applied
in an attempt to improve the solution and find the
most effective configuration. Therefore, a large list of
potential transformation solutions can require testing.
 Testing each potential solution requires applying
each transformation configuration to the sequential
code in order to find the most suitable, i.e. the
transformation which provides the best performance
results when executed on the target parallel platform.
The goal is to find the optimum solution among the
list of suitable solutions. A “best-so-far” process is
employed to keep a record of the most effective
transformation during the improvement cycle.

3 Improvements to the Process
The iterative methods applied within the
improvement cycle provide a method for finding the
optimal transformation solution to apply to the
original sequential code. However, a major
disadvantage can be identified.
 Given a sequential code with a large number of
possible transformations, the problem lies in finding
the most effective transformation in a time-frame
acceptable to the user of the system. The
improvement cycle may require a large number of
iterations in order to ensure that the best performance
has been found. The expert system provides guidance
for the choice of optimization parameter values.
However, it cannot dismiss possible solutions in the
belief that the performance results will be poor. All

potentially peformance-improving techniques must
be applied. Testing one solution itself may take some
time, therefore obtaining parallel performance
statistics for many configurations can be considered
unfeasible.
 A process is required to reduce the potential volume
of testing, while retaining the power to find the
optimum solution for the problem. The problem in
this context can be defined as:

‘The transformation solution to apply to a given
sequential legacy code which will produce a
performance speedup when executed on a
multiprocessor system’.

One method is to use the ‘experience’ gained from a
historical record of past parallelization cases [5]. This
requires a database of optimum transformation
solutions for a wide range of codes previously
parallelized (by hand or using iterative methods).
Each problem, and the associated most effective
solution, are stored in the database along with the
performance results obtained. It then may be possible
to find a matching problem within the database, and
use the previously recorded transformation. The
stored performance results indicate the potential
parallel execution performance which could be
obtained by applying this transformation to the
sequential code.
 The database effectively becomes a knowledge base
to supply satisfactory transformations quickly
without the need to test for all possibilities. The
pattern matching capabilities of modern Expert
System shells make the creation of such a knowledge
base within the system a possibility.
 This method is effective for problem cases to which
an associated solution exists within the Knowledge
Base. However, there are further issues to address
regarding the operation and effectiveness of this
method. A knowledge base with a limited amount of
cases may not contain any codes similar to the code
under consideration and make this method
unproductive. Furthermore, due to the complexity of
structural programming languages, codes which are
similar may exist in the knowledge base, but may not
be similar enough to guarantee the effectiveness of
the associated solution when applied to the sequential
code.
 Applying a degree of ‘fuzziness’ to the technique
will enable matches to be made based on relevance to
the original problem. If the current case matches a

case in the knowledge base almost exactly, the
relevance is high. As the degree of similarity between
cases decreases, the measure of relevance decreases
accordingly.
 A reasonable solution can be found, although a low
relevance factor can undermine the performance
potential associated with the solution. Improvement
is required to determine if this solution is indeed the
most effective possible. An iterative improvement
process may be required, thus removing any benefits
gained from using the knowledge base technique.
 Finding a relevance level which guarantees a single
satisfactory match can be difficult. Depending on the
size of the knowledge base, a range of possible
matches can be returned. Given an effective
combination of improvement, any of these
transformation solutions could potentially yield the
best possible performance results. An alternative to
the iterative method is required to explore this area
without incurring any time-consuming side effects.
 An improvement to this process has been attempted
by employing Case-Based Reasoning techniques for
the selection of potential solutions and the
application of an Evolutionary Algorithm to control
the progress of applied improvements. Research is
concentrated in the main areas of:

1. Effective Case retrieval
2. Solution transformation or improvement

using an Evolutionary Algorithm
3. Case Storing, to improve future searches.

Various models of case retrievers such as ARCHIE
[6] and DEJAVU [7] are used within the engineering
design domain. The most appropriate method for the
parallelization problem domain is that adopted in the
framework of the generic tool CASETOOL [8].

4 Case-Based Selection
During the Case-Based Reasoning process, searching
is guided by previous problem-solving experience.
These are stored as past cases, enabling solutions to
the problems already solved to be retrieved rather
than computed again. Within the problem domain of
parallelization, cases contain characteristics which
define the code. The associated transformation
solution is stored along with performance results
obtained during execution of the transformed parallel
program.

 A generic methodology for Case retrieval involving
the following three steps is applied to this problem-
domain:

1. Selection by Search Conditions: Selecting a
set of cases after removing all loosely
connected cases.

2. Classification by Relevance: Classifying
cases based on the degree of similarity of
characteristics between the given situation
and the selected cases.

3. Classification by Performance: Classifying
cases based on the past performance as a
prediction mechanism for potential
performance results for the given situation.

The relevance of selected cases is based on the
deviation of attribute values of cases from that of the
current selection and the relative importance
(weighting) of the attributes. The performance of
cases with a higher relevance are “trusted” to a
greater degree than those with a lesser relevance.
 A Relevance Norm (R) is evaluated to represent the
similarity between past cases and the present problem
situation. The value R is the normalized weighted
least square estimation of deviations [9]. The
evaluation of R can be illustrated using the equation
in Figure 1:

Fig. 1 Fitness Function

where v1 .. vn is the set of n attribute values of the past
case, c1 .. cn the corresponding values of the current
situation and w1 .. wn be the weights of these
attributes. The variables ui and li are the upper and
lower limits for the ith variable. The classification for
values of R is domain dependent, and is determined
by the Expert System base on in-built parallelization
strategy rules. Cases which fall into reasonable
system-defined classifications such as perfect or
close can be considered for selection.
 The characteristics of common compute-intensive
areas of program code such as loops are stored in the
knowledge base. Typical attributes or characteristics
for loop cases describe the loop itself and statements

within the loop body. The simplest type of loop (1
dimensional, with literally declared bounds) can be
described as:

1-dimensional Loop (lb/ub)

where lb and ub are the upper and lower bounds.
 More complex (n-dimensional) loops can also be
represented in the knowledge base, along with
specific information such as loop body statement
patterns for each level of nesting. For complex cases,
relevance is a crucial factor in decisions regarding
accuracy of matches. The performance of a selected
case can suggest the potential performance of the
current problem if the associated case-solution
transformation has been applied. The relevance
however, can affect the reliability of this solution and
therefore that of achieving the potential performance.
 It may be more rational to select a case with a higher
relevance factor over one with lower relevance
factor, even if the latter has a higher performance
potential. Determining the ‘fitness’ of one solution
over another solution can help allow the system to
make this choice. Fitness can be described as a
function of the relevance of the selected case and the
performance of the associated solution.
 Given the likelihood that a perfect match will not be
retrieved from the knowledge base, the system must
be capable of choosing between a number of
possibilities, each with varying degrees of reliability.
Simply choosing the fittest from a list of candidates
may not ultimately yield the best results, for a
number of reasons, e.g.

1. The fittest solution may still require
improvement.

2. Improvements suggested by the expert
system may be limited and/or misguided.

Improvements performed on a less healthy solution
may yield a better final result than that achieved by
improving on the fittest. The use of an evolutionary
algorithm enables a more explorative search to be
performed.

5 An Evolutionary Algorithm
Evolutionary techniques involve the use of computer-
based solving systems which use computational
models of evolutionary processes as key elements in
their design and implementation. The term

Evolutionary Algorithm describes an iterative and
stochastic process operating on a set of potential
solutions to a given problem (known as the
population). Such algorithms are applied to diverse
application areas [10]. Genetic Algorithms [11] fall
under the classification of Evolutionary Algorithms.
They combine Darwinian theory of survival-of-the-
fittest and natural genetics to form a robust search
mechanism. The adaptive nature of a genetic search
simulates learning from the problem environment as
the search progresses. Such learning guides the
search technique to arrive at global optimal solutions.
 Genetic Algorithms and Expert Systems have been
effectively combined with numerical optimization
techniques in a process called Interdigitation [12].
The genetic Algorithm is employed for global search
while the expert system handles local searches for
engineering design optimization problems. Hamada
et al. [13] has developed a hybrid model for Genetic
Algorithms and Knowledge-Based Systems for
production planning in steel plants.

5.1 Introducing the Genetic Algorithm
The steps in the algorithm are illustrated in Figure 2:

Fig. 2 The genetic algorithm

Generate initial population

Select individuals for next generation

Crossover

Mutation

Population complete?

Enough Generations
Found?

The fitness function for each selected case in the
knowledge base is used initially to focus on the most
potentially suitable candidates for improvement (the
initial population). At the initial selection stage, a
temporary population is created, containing the fittest
individuals. Reproductive operators are applied to
this population, and a new population is created.
Finally, individuals of the original population are
substituted by the newly created individuals. This
replacement tries to keep the best individuals and
keep the population size constant. The process is
repeated until a certain termination criterion is
achieved (usually after a given number of iterations).
 The reproductive operators are applied in an attempt
to improve on the current population while retaining
the best characteristics of the fittest individuals.

5.2 Applying this to Characteristics
A transformation Solution contains the necessary
information to guide the expert system and the data
distribution tools to create the required parallel
version of the sequential code. At the most basic
level, this information will include Number of
Processors to Use and Type of Data Distribution to
Apply. Communication and Processor optimization
parameters are also applied during transformation.
 This leads to many slightly different possible
transformations for each processor/distribution
combination. There may be many candidates for
initial selection, each with an associated fitness. For a
required initial population of n solutions, picking the
best n (those with highest fitness) from the candidate
list may not be the best initialisation strategy.
 Maintaining a level of diversity is important as the
best solutions may be quite similar to each other. A
limited set of potential improvements can then be
produced during each generation of the new
population. Tournament selection is used for initial
seeding. This picks the best individuals from a
randomly generated subset.
 The selected individuals undergo a set of
transformations as a result of reproductive operators.
Crossover, or recombination is the first operator to be
applied. One technique is two-parent crossover, in
which Parent individuals are selected for
combination, and offspring containing elements of
both are produced. Mutation is then applied to the
newly created offspring population in order to
diversify the new population. The amount of
mutation depends on the fitness of the parents.

 At this stage the improved individuals must be re-
evaluated for fitness. The system cannot rely on
previously stored information on performance of the
new solution, so parallel profiling techniques are
used. A new set of individuals are then selected to
continue the process. The Termination criteria
determine when to stop creating new generations,
e.g. stop after a set number of generations.

6 Future Work
Initial results have been encouraging, using a limited
knowledge base for this method. However, a full set
of results using a larger knowledge base is currently
being compiled and will be published in due course.
These results will also be used to compare to the
original KaTT system under the Expert System
driven iterative search method.
 The Expert system guidance has proven effective in
eventually obtaining a program transformation to
obtain the best possible performance results. Work is
also on-going to implement this guidance within the
actual Genetic Algorithm to help in selection,
population reproductive and replacement decisions.
This knowledge will be obtained through rigorous
use of the system under various methods given
differing circumstances. For example, the tournament
method of initial selection may be effective for some
problems, but an alternative method such as bias
selection may be more effective for others.
 Maintaining diversity is an issue which has
warranted considerable research [14]. During the
initial selection process, maintaining diversity over
the problem space can be problematic. The expert
system will attempt to ensure diversity is maintained
at this stage and further subsequent selections.
 The results for each successful implementation of
the evolutionary technique are stored in the
knowledge base. Along with this, further information
is stored regarding the steps taken within the process.
This information can be used to influence decisions
during the Case selection process. For instance, the
fitness of a stored case can be further influenced by
the effectiveness of the Genetic Algorithm process to
obtain the associated solution. Further environment-
base characteristics will also be introduced to
influence the fitness of a solution. For example,
different hardware platforms or processor topologies
can produce different performance results for the
same parallel transformation. Heterogeneous clusters
exhibit varying processor speeds and communication

or message-passing requirements not relevant to
High Performance multiprocessor systems.
 Memetic Algorithms [15] are an extension of
Genetic Algorithms to include local search
mechanisms such as the Hill-Climbing algorithm.
Applied to the problem-domain of parallel
transformations, the mutation operators will be
heavier, giving a higher possibility of unfeasible
solutions. The local search will improve the mutated
solutions with the intention of arriving at the optimal
solution much quicker than with standard Genetic
Algorithm. Investigation is based on whether the
introduction of local search heuristics may improve
the process for this problem-domain.

7 Conclusion
The emulation of human expertise within the
problem of automatic parallelization of legacy code
requires the production of an efficient parallel code
yielding a satisfactory performance improvement.
The cost of time taken to produce this improvement
must influence the measure of the effectiveness of a
system undertaking this task. Current work is
involved in reducing the time taken to produce
efficient parallel versions of the sequential legacy
codes, while maintaining or improving the quality of
the final parallel code. Initial results show that
improvements are possible. It is contemplated that
combination of the expert system and expansion of
current evolutionary techniques will further improve
the solution-finding process in the current system.

References:
[1] B. Chapman, T. Fahringer and H. Zima,

Automatic support for data distribution on
distributed memory multiprocessor systems,
in U. Banerjee et al. Eds. Proceedings of the
6th Workshop in Language and Compilers
for Parallel Computing, New York:
Springer-Verlag pp184-199, 1993

[2] P. F. Leggett, A. T. J. Marsh, S. P. Johnston
and M. Cross, Integrating User Knowledge
with Information from Parallelisation Tools
to Facilitate the Automatic Generation of
Efficient Parallel Fortran Code, Parallel
Computing, vol. 22, pp259 - 288, 1996.

[3] P. Milligan, P. P. Sage, P. J. P. McMullan
and P. H. Corr. A Knowledge Based
Approach to Parallel Software Engineering.
In, Software Engineering for Parallel and

Distributed Systems, Chapman and Hall,
ISBN 0-412-75640-0, pp 297 - 302, 1996.

[4] P. J. P. McMullan, P. Milligan and P. H.
Corr, Data Distribution, Analysis and
Evaluation of Code - An Expert System
Approach, Proceedings of the IEEE/IMACS
CSCC '99, 3rd World Multiconference on
Circuits, Systems, Communications and
Computers, 1999.

[5] McCollum B.G.C., Milligan P. and Corr
P.H., “The Structure and Exploitation of
Available Knowledge for Enhanced Data
Distribution in a Parallel Environment”,
IMACS/IEEE CSCC’99, ISBN 960-8052-
00-9, pp 3301-3307, Athens, 1999.

[6] A. Goel, J. Kolodner, M. Pearce and R.
Billington, Towards a case-based tool for
aiding conceptual design problem solving, in
Proc. Of the DARPA Workshop on Case-
Based Reasoning, Pensacola Beach, 1989.

[7] T. Bardasz, DEJAVU: Case-based reasoning
for mechanical design, AIEDAM, 1993.

[8] H. Shiva Kumar and C. S. Krishnamoorthy,
A frame-work for case-based reasoning in
engineering design, AIEDAM, 9, 1995.

[9] P. L. Bergan and R. Clough, Convergence
criteria for iterative processes, AIAA, 1978.

[10] Proceedings of the Genetic Evolutionary
Computation Conference, GEKKO, 2001.

[11] D. E. Goldberg, Genetic Algorithms in
Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

[12] D. Powell, M. Skolnick and S. Tong,
Interdigitation: A hybrid technique for
engineering design optimization employing
Genetic Algorithms, expert systems and
numerical optimization, Handbook of
Genetic Algorithms, L. Davis (Ed.), Van
Nostrand Reinhold, New York, 1991.

[13] K. Hamada, T. Baba, K. Suto and M. Yufu,
Hybridizing a genetic algorithm with rule-
based reasoning for production planning,
IEEE Expert, October 1995.

[14] E. Burke, J. P. Newall and R. F. Weare,
Initialization strategies and diversity in
evolutionary timetabling, Evolutionary
Computation 6(1), M.I.T., 1998.

[15] P. Moscató, Evolution, Search, Optimization,
Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms, Caltech
Concurrent Computation Program, 1989.

