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Abstract: - In this paper we propose a general framework of Fuzzy Systems. We also propose a novel rule 

reduction technique for a restricted class of Fuzzy Systems by combining the antecedents of the rules with same 
consequents. This rule reduction is lossless with respect to inference. A few examples from this class of Fuzzy 
Systems are given. 
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1. Introduction 
Following the wide spread usage of Fuzzy 

Systems, Rule Reduction has emerged as one of the 
most important areas of research in the field of Fuzzy 
Control. It is well known that an increase in the 
number of input variables and/or the number of 
membership functions in the input domains quickly 
lead to combinatorial explosion in the number of 
rules.  

The several approaches taken towards rule 
reduction in Fuzzy Systems can be classified into the 
following categories: Selection of important rules 
that contribute to the inference, Elimination of 
redundant rules based on some criteria or Merger of 
rules that share some common property. Taking the 
first approach, rule reduction has been addressed in 
[1,2,3] using Genetic Algorithms and Evolutionary 
Methods, in [4,5,6] using Orthogonal 
Transformations. [15] is a good survey on the above 
methods. In [7], the author has employed a similar 
idea as that of ours, i.e., merging rules with similar 
consequents. In [8], Magne et al., use a similarity 
measure to merge rules. (See §5 for more details). 
But very little work has been done on rule reduction 
techniques that preserve the inference, i.e., the 
outputs of the original and the reduced rule bases are 
identical. This work proposes a novel rule reduction 
technique for a restricted class of Fuzzy Systems that 
preserves the inference. 

2. A General Framework for Fuzzy 
Systems 

2.1 Different Stages of a Fuzzy System 
 A Fuzzy System consists of the following 5 
stages: 
 
2.1.1Fuzzification:  
In this step, the given crisp input a  is fuzzified to get 

a fuzzy set 
~
X  on the corresponding input space, i.e., 

~
Xa → . 

 
2.1.2 Matching:  

The input fuzzy sets 
~~

2,1

~

)...,,( nXXX  are matched 

against their corresponding if-part sets of their input 
spaces in each of the rule antecedents in the Fuzzy 

System, i.e., )X,A(Sa
~j

i
j
i = .     (1) 

2.1.3 Combining: 

In a multi-antecedent fuzzy system, the various 

matching degrees j
ia  of the n input fuzzy sets to the 

antecedent of a fuzzy if-then rule is combined to  

)a,...,a(T j
n

j
1j =µ .    (2) 

 
 



2.1.4 Rule Firing:  

The combined value jµ  fires the rule consequent or 

the output fuzzy set jY . In many models of fuzzy 

system, this jY  is taken as its centroid jy , i.e., 

)y,(ff jjj µ= .       (3) 

2.1.5 Aggregation or combining Inference: 
 The fired output fuzzy sets (or crisp sets) 

.m,...,2,1j,jf = ; are then aggregated to obtain the 

final output fuzzy set )f,...,f,f(gy m21= . (4) 
 

2.2 Different Models of Fuzzy System in the 
literature: 

Let us consider the following system of m 
fuzzy if-then rules: 
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where n,...,2,1ifor)X(FA i
j
i =∈  are the input fuzzy 

sets over the n input domains n21 X,,X,X K  and 

m,...,2,1jfor)Y(FB j =∈  are the output fuzzy sets 

over the single output domain Y . The following are 
the two most widely used models of fuzzy systems. 

2.2.1 Takagi – Sugeno Fuzzy System: 
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where we use Singleton Fuzzification. For the input 
)x,...,x,x(X n21= , the matching values are given by 

)x(AXAorXAa i
j
i

~
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j
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j
i =⋅∧= .  The combined 

value of the multi-antecedent if-part is given by 

)x(A...)x(A)x(Aa...aa n
j
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and jb  is the centroid of the output fuzzy sets 

.m,...,2,1j,B j =  

 
 

2.2.2 Mamdani Fuzzy System: 

 The output fuzzy set B given by bµ  is as 
follows: 

   ))w(a(f)w( jb
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where 
~

i
j
i

j
i XAa ∧= ,  j

i

n

1i
j a

=
∧=µ ,  )w(f jbjj µ∧µ=  

and  )w(jbµ  is the output fuzzy set jB  of the jth  

rule. 

2.2.3 Kosko’s Standard Additive Model (SAM): 
The output is given by 

∑
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where )x(a...)x(a)x(a n
j
n1

j
1j ⋅⋅= , jv  and jc  are 

the volume and centroid of the output fuzzy set jB  

of the jth fuzzy if-then rule and jw  are the rule 

weights. Letting jjjj v)x(aw ⋅⋅=µ  we get the 

Takagi – Sugeno fuzzy system.  
 

2.3 A General Framework for Fuzzy Systems: 
 From the above two sub-sections 2.1 and 2.2, 
it appears that the different stages can be mapped to 
different functions capturing the actions performed at 
every stage. To this end, we do not consider 
‘fuzzification’ stage since a crisp input to the fuzzy 
system can be thought of as a singleton – fuzzified 
input fuzzy set.  

Then the different stages and the 
corresponding mappings capturing their actions can 
be given by: 

Matching:   ]1,0[)X(F)X(F:)X,A(S:a ii
~
i

j
i

j
i →×  

Combining:  ]1,0[]1,0[:)a,...,a(: nj
n

j
1j →µµ  

Firing:   ),...,(: 1 mj ff µµ  

Aggregation:  ),...,( 1 mffgg =  
 The corresponding functions for 

gandf,,S µ  for the different models of fuzzy 
systems are tabulated in Table 1. 

 
 



Table 1. gandf,,S µ  for the different models of fuzzy systems 

Name / Type S µ f g Fuzzification 
Takagi – Sugeno ∧ Product Product Weighted 

Average 
Singleton 

Mamdani – Type I ∧ ∧ Product/ 
Minimum 

∨ Any 
 

  Mamdani – Type II ∨ ∨ Product/ 
Minimum 

∧ Any 

Kosko’s SAM ∧ Product Product Weighted 
Average 

Singleton 

 

3. A Novel Rule Reduction for a 
Restricted class of Fuzzy Systems: 

3.1 Inference in MISO – Fuzzy Systems under 
µ,, fg and S  

 A general Multi Input Single Output (MISO) 
– fuzzy system is given as follows: 
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where n,...,2,1ifor)X(FA i
j
i =∈  and 

m,...,2,1jfor)Y(FB j =∈ . Then the general 

inference in the absence of any input is given by: 

)9(]}B),A,...,A,A([f...,

],B),A,...,A,A([f],B),A,...,A,A([f{g
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where µ is any antecedent combiner, f is any function 
representing the rule firing and g is the aggregation. 

3.2 Rules with the same consequents: 
 More often than not, the number of fuzzy sets 
(membership functions) defined on the single output 
domain, say r, is typically much less than the number 
of rules m, i.e., r << m.  To eliminate this 
redundancy, we propose a new type of rule reduction 
where the rules with same consequents but different 
antecedents are merged into a single rule. Then we 
will have only as many rules as there are output 
membership functions, in fact only those that are part 
of the original fuzzy system. 
 The issue involved here is that despite the 
merging of the above rules, there should be no loss of  
inference, i.e., the output that would have been 
obtained for a given input to the original model  
 

 
should be the same as that of the reduced model for 
the same input. 
 This necessitates the functions 

µ,, fg and S to possess some properties. These 
are explored in the next sub section. 

3.3 The Restrictions on µ,, fg : 

 Let us consider a MISO – fuzzy system. 
Without loss of generality, let us take a 2-input 1-
output fuzzy system, where X1 and X2 are the input 
domains and Y the output domain. Again, without 
loss of generality, let us consider the fuzzy system 
with the following rules: 
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DB,A:R

CB,A:R

CB,A:R

333

222

111

    (10) 

Then the inference under µand,f,g in the 
absence of any input to the fuzzy system is given by 

]}D),B,A([f

],C),B,A([f],C),B,A([f{g

33

2211
µ

µµ
  (11) 

Since we need to merge the rules R1 and R2 having 
the same consequents, we do the following: 

From (11) we have,  

]}D),B,A([f

],C),B,A()B,A([f{g

33

22g11

µ

µµ o
  (12) 

]}D),B,A([f

],C),BB,AA([f{g

33

2121

µ

µ= µµ oo
  (13) 

3.3.1 Combining ‘Combined’ Values: 
 From (11) we obtain (12) by composing the 
antecedents )B,A( 11µ  and )B,A( 22µ of the rules R1 
and R2 having the same consequents. This introduces 
a new operator III:g →×o  such that 

)C,BA(f)]C,B(f),C,A(f[g go= .   (14) 

 



Thus the function g should possess a corresponding 
operator go such that (14) is satisfied. Also g should 

be associative. 

3.3.2 Combining Fuzzy Sets on the same Domain: 
 From (12) we obtain (13) by combining 
fuzzy sets that are defined on the same input domain, 
i.e., A1, A2 ∈ F(X1) and B1, B2 ∈ F(X2). To this end, 
we introduce another operator III: →×µo  such that  

)15()BB,AA()B,A()B,A( 212122g11 µµµ=µµ ooo

 In the absence of any input to the fuzzy 
system, the restrictions applied so far are: 
1. g is associative. 
2. )C,BA(f)]C,B(f),C,A(f[g go= .   (14) 

)15()BB,AA(

)B,A()B,A(.3

2121

22g11

µµµ=

µµ

oo

o

 The above technique is applied when g and µ 
obey the given equations and possess functions 

µoo andg . 

3.4 The Reduced Rule Base and Inference in 
the presence of inputs: 
 In the above discussion, the function S has 
not figured. This is because one of the parameters for 
S is the current input. Let us consider the inference in 
the above MISO – fuzzy system in the presence of 

input, say )X(FB),X(FAwhere)B,A(X 21
~

∈∈= . 
The MISO inference can be given as: 

(16)]}D)),B,B(S),A,A(S([f

],C)),B,B(S),A,A(S([f],C)),B,B(S),A,A(S([f{g

33

2211

µ
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(17)]}D)),B,B(S),A,A(S([f

],C)),B,B(S),A,A(S())B,B(S),A,A(S([f{g

33

22g11

µ

µµ= o

 

(18)]}D)),B,B(S),A,A(S([f

],C)},B,B(S)B,B(S),A,A(S)A,A(S{[f{g
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(19)]}D)),B,B(S),A,A(S([f

],C},)B,BB(S,)A,AA(S{[f{g

33

2s12s1

µ
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In the presence of an input )A,,A(X
~
n

~
1

~
K= , 

the matching fit values )A,A(Sa
~

i
j
i

j
i =  are calculated 

and thus the function S features in (16) which is 
otherwise another form of (11). 

We obtain (17) from (16) by using (14) and 
(18) from (17) by applying (15). Since in the reduced 
rule base A1 and A2 are not separately accessible, we 
go a step further and combine the fuzzy sets on  the 
antecedents on the same domain. To enable us to 
perform this, we introduce a new operator 

III.,e.iI)X(F)X(F:s →×→×o  such that 

)A,AA(S)A,A(S)A,A(S 2s121 oo =µ              (20) 

 Observing (13) and (19) a little closer, we see 
that for the inference to hold even after the rule 
reduction, we need   

µ≡ oos     (21) 

and thus S and µ are related. Thus the only properties 
g, f, µ and S should posses are : 
1. g is  associative. 
2. )C,BA(f)]C,B(f),C,A(f[g go= .   (14) 

)15()BB,AA(

)B,A()B,A(.3

2121

22g11

µµµ=

µµ

oo

o

 
4. )A,AA(S)A,A(S)A,A(S 2121 µµ = oo ,  (20) 

since µ≡ oos     

 The above equations are the well-established 
Aggregation Equations [10]. [11-14] give a good 
coverage on general bisymmetry equations.  
 

4. Examples of a few Fuzzy Systems 
from the above class 

4.1 Mamdani-type models with Residuated 
Implications 

For through out this section we will consider, 
without any loss of generality, the previous 2-input 1-
output fuzzy system with 3 rules as given in § 3.3: 

DB,A

CB,A

CB,A

33

22

11

→
→

→
    (10) 

 
 A Residuated Implication [9] 

]1,0[]1,0[]1.0[:I →×  is obtained as the residuation of 
a binary operator, in our case a t-norm, 

]1,0[]1,0[]1.0[:t →× , such that  
]1,0[c,b,a,cIbacbta ∈∀≤⇔≤ .  

The pair (t,I) is called the adjoin couple. 
 Some of the well-known R-implications and 
their corresponding t-norms are given in Table 2. 
 
 
 



 
 

 

Table 2. Some of the well-known R-implications and their corresponding t-norms 
Name t(a,b) I(a,b) 

Lukasiawicz max(0,a+b-1) min(1,1-a+b) 
 

Mamdani 
 

min (a,b) 






 ≤

=→
otherwise,b

baif,1
ba  

 
Larsen 

 
a.b 











 ≤

=→
otherwise,

a

b

baif,1
ba  

 
 Since ),t,,],1,0([L →∨∧=  forms a Linearly 
Ordered Residuated Lattice, we have the following 
properties of L: 

c)a()ca()a i
i

i
i

→∧=→∨    (22) 

c)a()ca()b i
i

i
i

→∨=→∧    (23) 

 

4.1.1 Mamdani Model – Type I  
From Table 1, we know that for the Mamdani model 
of type 1, we have ∧=∧=µ∨= Sand,g . Taking f 
as an R – implication, denoted →=f , we have from 
(9), in the absence of any external input to the fuzzy 
system in (10)  

]D)BA([

]C)BA([]C)BA([

33

2211

→∧∨
→∧∨→∧

 

]D)BA(([

}C)]BB()AA([{

33

2121

→∧∨
→∧∧∧=

  (24) 

from (22) and grouping Ai’s and Bi’s. Also (24) is 

        (25)]D)BA(([]C)BA([ 33
*
1

*
1 →∧∨→∧=  

Thus with ∧=∧= µoo andg  we have the 

fuzzy system in (10) with 3 rules reduced to a fuzzy 
system with 2 rules (25) without any loss of 
inference. Thus we have 

∧=∧==→∧=∧=µ∨= µoo and,f,S,,g g . 

 In the presence of an input, say )B,A(X
~

= , 
we have: 

]D))B,B(S)A,A(S([

]C))B,B(S)A,A(S([

]C))B,B(S)A,A(S([

33

22
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→∧∨
→∧∨

→∧
  (26) 

Since in the above model, S = ∧, we have, by 
substituting for S in (26)  
 

]D))BB()AA(([

]C))BB()AA(([

]C))BB()AA(([

33
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→∧∧∧∨
→∧∧∧∨

→∧∧∧
  (27) 

From (27) by applying (14), (15) and (20) coupled 
with the fact that ∧=≡ µoos  we obtain 

∧〉=〈→∧∨
→∧∧∧

  S since]D))B,B(S)A,A(S([

]C))B,BB(S)A,AA(S([

33

2121   

QED]D))B,B(S)A,A(S([

]C))B,B(S)A,A(S([

33
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1
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∨→∧=

  

4.1.2 Mamdani Model – Type II 
In the above Mamdani Model, by replacing 

∨=∨=µ∧= Sand,g  and retaining f to be an R – 
implication, it can similarly be shown using (23) that 
rule reduction of the proposed type is possible with 

∨=≡∨= µooo sg and . 

 

5. Other works along this line 
 In [7] the author employs the same idea, that 
of merging the rules with identical consequents. To 
this end, the author has defined new complimentation 
and also CNF Union (∪) and Intersection (∩) 
operations, that do not satisfy all the properties of S- 
and T-norms, respectively. The ‘goodness’ of the 
inference obtained by employing CNF ∪ and CNF ∩ 
are not discussed. Whether the merger envisaged is 
lossless in terms of inference is not addressed. Also 
rules with more than 1 antecedent have not been dealt 
with. 
 In [8], M.Setnes et al., use a similarity 
measure to merge rules with fuzzy antecedents and/or 
consequents that are similar to each other above a 
specified threshold. Their main stated intention is the 
reduction in number of fuzzy sets used in the model. 
Again the issue of preservation of inference between 
the reduced rule base and the original fuzzy system is 
not addressed. 



6. Advantages and Limitations 

6.1 Advantages 

+ The inference obtained from the original fuzzy 
rule base is preserved. 
+ The method works for any type of membership 
functions. 
+ Computationally efficient since there are only as 
many rules as the number of fuzzy sets that featured 
in the original rule base. 

6.2 Limitations 

- The approximation capability of the proposed 
restricted class of Fuzzy Systems is yet to be 
established. 
- Merging of rules, in some cases, may turn out to 
be computationally intensive. 
- In some instances, the above method may even 
increase the number of fuzzy sets defined on different 
input domains and thus may consume more memory. 
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