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Abstract: - In this paper we present an adaptive fuzzy logic algorithm (AFLA) for sensor fusion that enables also to 
determine unknown sensory performance based on a fast and simple analysis in controlled conditions. The algorithm 
deals with unknown a-priori sensory distribution and provides the autonomous mobile robot (AMR) three important 
characters: efficiency, reliability and robustness. The advantages of the AFLA are presented by comparing it to 
another adaptive algorithm using a simulation. 
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1. Introduction 
To perform in unknown and dynamic surroundings an 
autonomous mobile robot (AMR) must acquire and 
manipulate a rich model of its internal states and 
operating environments. A single sensor is in general 
insufficient to provide complete information due to the 
intrinsic limitations of all sensors and due to the 
complex environment. Furthermore, on-line sensory 
and system performance must be measured so the 
robot can react to the changing conditions. Sensor 
fusion is therefore necessary to integrate data from a 
multitude of distinctly different sensors needed to 
extract parameters and states for robot self-location, 
map making, path computing, motion planning and 
motion execution [8,12]. Many algorithms for 
distributed sensor fusion were developed and 
implemented [1,3,11]. However, most of them assume 
known statistical parameters, namely the a-priori 
probabilities of the sensors. In unstructured 
environments, it is very difficult to obtain accurate 
statistics of the sensors or environment since in many 
cases knowledge is incomplete or partial [2,4,10]. 
Recently the idea of feedback has been employed for 
sensor fusion in distributed systems without memory  
[13] in order to optimize the fusion rule. In  [13] the 
fusion center feeds its decision to each of the local 
sensors, where, each sensor make its new decision 
based on the feedback and its last decision. This 
system requires a-priori knowledge of the false alarm 
probabilities. In this paper we present an adaptive 
fuzzy logic algorithm (AFLA) for sensor fusion, which 
enables also to determine unknown sensory 
performance. This enables to measure and rank the 
sensors according to their on-line measured 

performance. By using this method the AMR can 
efficiently use its resources and identify when one of 
the sensors malfunction. The advantages of the AFLA 
are presented by comparing it to another adaptive 
algorithm  [5]. 
 
 
2. Sensor fusion algorithm 
2.1. Methodology 
The AFLA was developed using three basic concepts: 
logical sensors (LSs), grid map paradigm and 
performance measures. The need for describing the 
area surrounding the AMR using sensors that have 
unknown noise distributions is achieved by the logical 
sensor and grid-map concepts. The performance 
measures are used to calculate on-line the LSs 
uncertainty and enable response according to changing 
environmental conditions. 
Logical sensors enable to isolate sensor fusion 
evaluation from the actual semi-real world  [14]. No 
accurate a-priori modeling of the sensors or 
environment is needed. This enables easy fusion of 
multiple and different types of sensors (e.g., vision and 
sonic) and algorithms (e.g., different algorithms for 
identical data)  [14]. Sensors can be added or upgraded 
with no need to change the whole system’s concept.  
One of the common methods for modeling AMR 
environments is the grid-based method  [7]. The grid 
map paradigm represents the environment by evenly 
spaced grids. Each grid cell may, for instance, indicate 
the presence of an obstacle in the corresponding rein 
of the environment. The LSs map size is determined as 
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the area covered by the physical sensors in the 
direction in which the AMR advances. 
The performance measures were defined in a previous 
work  [6] and represent the difference between the final 
map (the outcome of the fusion process) and the LS’s 
map. They enable to measure the quality of the 
different LSs at each fusion step 
 
2.2. Information flow 
The environment is represented by a local grid map 
constructed as a two-dimensional binary array in 
which 1 represents occupied cells and 0 represents free 
cells. Each LS reads the data from the environment 
and describes it in its own 2D binary array. This map 
contains ‘noise’ that represents the probability of 
‘mistakes’ for each LS (i.e., this noise is a parameter 
determined by a value of 0% to 100%; a probability of 
0% implies no noise and 100% means the LS ‘sees’ 
every thing vise versa). Since sensor acquisition is a 
synchronized process and sensor fusion is 
asynchronous, whenever one of the LSs maps is 
updated, the adaptive fuzzy logic fuses the LSs maps 
into one global binary map. The domain of the GBM 
covers the same area covered by all the LSs. The 
AFLA takes as inputs all LGMs and fuses the data into 
a global binary map (GBM) considering the sensors 
performance measures (Fig. 1). This is done each time 
the LGMs are updated. Performance measures are 
calculated by comparing the global binary map with 
the LGM of each LS map according to equations (1-4)  
[6]. These measures provide the AFLA the relative 
number of times where both the LS map and the GBM 
found the cell as ‘True’ (e.g., TT) and correspondingly 
for FF, TF and FT. 
 

 
Fig. 1 Information flow 
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FF≡Number of cells that were signed as free both 
on the LS and fused maps ≡ 
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(2)

TF≡Number of cells that included obstacles on 
the LS map but were signed as free on the fused 
map ≡ 
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(3)

FT≡Number of free cells on the LS map signed 
but was signed as obstacles on the fused map ≡ 
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According to the four measures and the AFLA a truth 
table is built (Fig. 2). The truth table is an array that 
contains all possible LS readings (True/False) and the 
result according to the adaptive fuzzy logic algorithm. 
For example, if a system contains three LSs, eight 
combinations of LSs (FFF, FFT, FTF…TTT) are 
obtained (i.e., the minimum number of LSs the AFLA 
can deal is three, the maximum number is unlimited). 
From the truth table and the algorithm, once data from 
the LGM is received a new GBM is rebuilt (Fig. 2). 
When the GBM is updated, an average value of the 
four logical performance measures (TT, FF, TF and 
FT) is returned as feedback to each LS. The AFLA 
uses the new values the next time it fuses the LGM’s 
into the GBM. 

 
Fig. 2 Building the GBM from the LGM and the four 

performances measures 



 

2.3. Adaptive fuzzy logic algorithm 
The purpose of the algorithm is to reconstruct the truth 
table whenever the GBM is updated. The algorithm 
reads the four measures (TT, FF, TF and FT) of each 
LS and calculates for each rule the ‘True’ and ‘False’ 
values. 
The fuzzy associated variables, attributes and 
linguistic variable, of each fuzzy set (Table 1, Table 2 
and Fig. 3) membership functions (MF) values and 
linguistic variables (LV) were defined empirically and 
were not optimized. System performance can be 
improved by changing the rules and/or the 
membership function values. The MF and the rules 
were determined using two assumptions. The first is 
symmetry for ‘True’ and ‘False’ values. A ‘True’ 
value has equal importance as ‘False’ value (Table 1 
and Fig. 3). The second assumption assumes two 
groups of rules that refer to the LS decision, ‘support‘ 
and ‘contradict’. These rules correspond to TT, FF 
(rules 1-6, Table 2) and TF, FT (rules 7-12, Table 2) 
respectively. After defuzzyfication and based on the 
sensors combination in the truth table (Fig. 2), the final 
‘True’ and the ‘False’ values were summed. Based on 
the following rule, a final result for the specific 
sensors combination (i.e., ‘True’ or ‘False’) is 
obtained. 
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Fig. 3 Membership functions of the system variables. 

 

Table 1 The FSs, their associated variables, attributes and the 
LVs of each FS 

 Fuzzy Sets 
Values 

Fuzzy 
Set 

Attribute Fuzzy Variable 

High, Avg., Low Trend TT 
High, Avg., Low Trend FF 
High, Avg., Low Trend TF In

pu
ts

 

High, Avg., Low Trend FT 
High, Avg., Low Trend True 

O
ut

pu
ts

 

High, Avg., Low Trend False 

 
Low 
(0,0,0.2,0.3) 
Avg. 
(0.2,0.35,0.65,0.8) 
High 
(0.7,0.8,1,1) 
 

 
Table 2 Rules for calculating the reliability of the LS units 

 Fuzzy Variable Input Fuzzy Variable 
Output 

Rule TT FF TF FT True False 
1 High    High  
2 Avg.    Avg.  
3 Low    Low  
4  High    High 
5  Avg.    Avg. 
6  Low    Low 
7   High  Low  
8   Avg.  Avg.  
9   Low  High  
10    High  Low 
11    Avg.  Avg. 
12    Low  High 

 
2.3.1. Algorithm Inputs and Outputs 
The algorithm inputs and outputs for each LS are the 
performance measure parameters and two values 
‘True’ and ‘False’ respectively. These outputs 
represent the LS’s certainty for identifying signed and 
unsigned cells within its grid-map. These two outputs 
values are used as an input for the rule (section  2.3), 
which with the truth table (Fig. 2) determine the final 
value (i.e., ‘0’ or ‘1’) for each LSs combination. 
 
 
3. Sensors performance determination 
3.1. General 
The purpose of this system is to determine unknown 
LS’s noise. 
The procedure for calculating this value contains two 
parts: (a) Simulation (details in section  4.2) that 
calculated the performance measures. (b) Semi-real 
world experiment (details in section  4.3) to calculate 
the unknown LS’s noise. 
The aim of the simulation is to build the transition 
matrices, which represent a unique state of the LS 
performance (defined in section  3.3)  [9] for the 
unknown LS for different noise conditions. The aim of 
the semi-real world experiment is to calculate the 



 

unknown LS’s noise based on one of the transition 
matrices generated in the simulation part. 
 
3.2. Assumptions 
• The number of LSs in the simulation and semi-real 
world experiments should be the same because the TM 
of each LS combination is unique (section  3.3). 
• The number of LSs in the simulation and semi-real 
world experiments should be odd. This assumption is 
necessary since in case of disagreement between the 
LSs the system cannot converge into a stable solution. 
• TT and FF have identical values, and TF and FT 
have another identical value. By definition the sum of 
TT and FT is equal to one, and the sum of FF and TF 
is equal to one. This assumption does not influence 
system performance, however is essential to simplify 
system analysis due to the infinite number of 
performance measures combinations. 
 
3.3. Transition matrix 
Each LS has four unique transition matrixes (TM)  [9], 
one for each performance measure. Each cell in the 
matrix defines the probability to transfer from state i to 
state j (Fig. 4). There is a different transition matrix for 
each combination of noise level of the other sensors 
and the sensor itself (i.e., for sensor A of 10%, sensor 
B of 20% and sensor X unknown). The transition 
matrix is made of 10201 cells (i.e., from ‘0’ to ‘1’ with 
steps of 0.01). The shape of the TM depends on three 
parameters: the total number of LSs in the system, the 
LSs noise parameters and initial performance 
measures values for each LS. These parameters enable 
to define the noise characteristic of each LS precisely. 
 
3.4. Procedure 
The procedure for calculating and building the 
transition matrix is as follows: 

i. The noise for each LS is defined. 
ii. Each LS builds its map (according to its noise). 
iii. Performance measure values for the four 

parameters are defined (TT, FF, TF and FT), the 
values runs from ‘0’ to ‘1’, as described in  3.1. 

iv. The AFLA creates the fused map.  
v. A comparison between the fused and the original 
map is made. Four new performance measures are 
recalculated using equations (1-4). 

vi. The average value, of the old and the new 
performance measure is calculated, and stored in an 
array. 

vii. The above procedure, (from creating the noised 
map ( i) until saving it ( vi)), runs for 100 times. It is 
important to run this procedure many times because 
the generating noise process of the LGMs is random. 

viii. After summing data from the array and 
normalizing each line separately in it, the transition 

matrix can be determined using linear regression 
equation (5) and Fig. 4. 

The procedure for calculating the performance 
measures for the unknown LS is: 

i. Find two LSs with maximum noise of 10% each. 
ii. Determine the initial performance measures for 
all three LSs. 

iii. Make an experiment in semi-real world and 
calculate the performance measure for the unknown 
LSs. 

iv. The performance measure is returned as 
feedback and calculated as the average value of the 
last and the new performances measures. Therefore, 
the line’s slope in the transition matrix is constant an 
equal to 0.5. One point is necessary to determine the 
correspond TM (more in section  4.3). 

The above procedure, (from ( i) to ( iii)), runs several 
times for different initial performance measure values 
to increase the results reliability. 
 

 
Fig. 4 Transition matrix: Input, Output  

and straight-line equation. 
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4. System analysis 
4.1. General 
To analyze the AFLA performance a simulation was 
implemented with three LSs. The simulation consists 
of two off-line programs: the first is a program in 
VC++ that generates the data 100 times; the second 
finds the TM using Matlab. 



 

4.2. Transition matrix generation 
The simulation’s first part is implemented off-line and 
consists of three sensors in which two of them are of 
known performance and one is the unknown sensor to 
be determined. The original map consists of a two 
dimensional binary array with 100 cells in which half 
of the cells are set ‘1’ and half of them set ‘0’. Each 
LS reads this original map. Noise is added randomly 
according to the predefined noise parameter. The 
initial values of the performance measures for the first 
and the second sensors remain constant during the 
process, and were defined as TT=FF=0 and TF=FT=1. 
For the unknown sensor, the noise is constant during 
the process but the performance measures changed 
from 0 to 1 with step of 0.01. The noise of the two 
other sensors changes from 0% to 100% noise with 
steps of 10%. All noise combinations were checked 
without repetitions (i.e., noise combination of 
LS1=0%, LS2=30%, LS3=60% is identical to the case 
of LS1=30%, LS2=0%, LS3=60%). 
The simulation’s second part reads the repeated data 
(i.e., each LSs condition checked for 100 times) and 
calculates an average value for each input state of the 
TM (more details in section  3.4). 
An example how the algorithm works can be seen in 
Fig. 5. In this example the TT performance measure is 
for 3 sensors with two of them with 0% noise, and the 
third has 0% noise in case (a) and 100% noise in case 
(b). Case (a) represents an example where the third 
sensor (with 0% noise) has in the beginning a TT 
value equal 0 (Pi0), the reliability of the two other 
sensors is low, and in four iterations reaches a high 
reliability (Po4=0.9375). An opposite example can be 
seen in case (b) where the third sensor has a TT value 
of 1 (Pi0); since the other two sensors are very reliable 
(with 0% noise) this sensor’s reliability decreases to 
0.0625 (Po4) within four iterations. 
 
4.3. Noised calculation of the unknown sensor 
The noise is calculated using a semi-real world 
experiment. In the semi-real world experiment the 
system has three LSs, where for two of them the noise 
is unknown but must be less than 10%. The operator 
determines the initial performance measures for all 
three LSs. 
The experiment is operated once each of the LSs reads 
the same area and builds its local grid map. The 
AFLA then fuses the data from the local maps into one 
global binary map and calculates for the unknown LS 
its new performance measures. The experiment is 
implemented once and a new set of performance 
measures is accepted for the third LS. By having the 
line slope (i.e., constant and equals to 2) and a point, 
which is determined by the input and output 
performance measures, the TM is be built. 

From these TMs calculated in the simulation part, the 
most suitable TM can be determined and the LSs noise 
can be found. 
Some methods exist to increase results reliability: 

i. Implementing the procedure (section  3.4: ( i) to  
( iii)) several times for identical or different initial 
performance measure values.  

ii. Causing the algorithm to converge by 
implementing the algorithm for three or four times 
without initiating the performance measure values 
each time, then using linear regression to pass the 
best line between the points.  

iii. Combining the first and second methods. 
 

(a) 

(b) 
Fig. 5 The third sensor TT measures. 

The third sensor has in case (a) 0% noise and in case (b) 100% 
noise. The other two sensors have 0% noise. 

 
 



 

5. Results and discussion 
The simulation analysis exposed the majority rule. The 
majority rule is similar to the ‘MOST’ algorithm  [5], 
which means that when the majority of the LSs are 
‘good’, (i.e., each LS has less than 20% noise) the 
amount of noise for the third LS does not influence the 
final result (even if it has 100% noise). Accepted 
results are always good. This phenomenon works in 
the opposite direction as well, when the majority of the 
sensors are ’bad’ (90% noise) it does not matter how 
‘good’ is the third LS, the accepted results are always 
bad. An example for this rule can be seen in Fig. 6. In 
this case, the first and second LSs have 0% noise and 
the third sensor has different noise values. In Fig. 6(a) 
the TT and FF performance measures are presented 
and in Fig. 6 (b) the TF and FT performance measures 
are presented. In each subfigure eleven simulations are 
sequentially presented according to the noise of the 
third LS (the numbers below the figure represent its 
noise). 
Analysis of the majority rule under different noise 
conditions exposed three phenomenons:  

i. The sequential noise phenomenon: the noise 
of the third LS moves sequentially from one side of 
the matrix to the other. 

ii. The noise density phenomenon: for the 
unknown LS the distance between the lines for the 
TT and FF measures decreases as the noise ratio 
increases and for the TF and FT measures the 
distance between the lines increases as the noise 
ratio decreases (Fig. 6). 

iii. The loop phenomenon: the noise of the first 
and the second sensors are within the 20% to 80% 
interval noise and the third sensors noise is 
changing. When combining the eleven transition 
matrices of the third sensor into one image, a loop 
phenomenon is exposed. First the line goes in one 
direction and then changes direction as shown in 
Fig. 7. This means that the reliability of the third LS 
has its lowest values when the noise is close to limits 
(0% and 100%). When the noise of the third LS is in 
between, its reliability increases.  

 
To calculate the LS’s noise value, the sensor fusion 
algorithm (i.e., in this case the AFLA) must have two 
basic characteristics: continuity and dissimilarity. The 
lines in the transition matrices must be continuous but 
differ in location for each sensor combination. In the 
Adaptive Dempster-Shafer algorithm  [5], which does 
not have these characteristics, the dissimilarity 
phenomena interfere when part of the lines within the 
transition matrix is the same for all sensors 
combinations (Fig. 8, area ‘A’ and Figure 9). The 
continuous phenomenon interferes by the differences 
between areas ‘A’ and ‘B’, in Fig. 8. The differences 

between the two figures (Fig. 8 and Figure 9) are not 
only with the LS’s noise but also with their PM’s 
definitions, which differ in the LS initial PM values. 
For Fig. 8 the initial LSs are changeable but the same 
for all the three LSs. The initial values for Figure 9 are 
constant values for the first and the second LS (i.e., TT 
and FF equals to 1 and TF and FT equals to 0). 
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Fig. 6 TMs of three sensors, the first and the second sensors 
with 0% noise, the third sensor’s noise change from 0% to 

100%. 
(a) TT and FF transition matrix. 
(b) TF and FT transition matrix. 
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Fig. 7 Simulation results of three sensors, two of them with 
30% noise; the third sensor change from 0% to 100% noise. 

 
 
6. Summary and Conclusions 
The ability to measure sensory performance under real 
conditions and characterize them provides the AMR 
three important parameters: efficiency, reliability and 
robustness. 
Maintaining the continuity and dissimilarity 
characteristics while combining them with the three 
concepts of logical sensors, grid map and performance 
measures together in one paradigm has not been 
implemented. The unique concept and the 
characteristics of the AFLA make it appropriate for 
measuring, calibrating and ranking LSs. This enables 
to react for environment changes and choose the most 
suitable LS automatically. Practically, malfunctioning 
or poorly behaved sensor can be detected on-line and 
suspended until their performance improve. At each 
step the simplest LS can be employed thus reducing 
system complexity and providing fast response. Since 
the LS are analyzed on-line more complex LS can be 
introduced whenever needed. This ensures high equity 
performance. 
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Fig. 8 TMs for ADS algorithm with three sensors, the first and 
the second sensors with 30% noise.  

The third sensors change from 0% to 100% noise. 
The initiated PM values for the three LS are the same. 
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Figure 9 TMs for ADS algorithm with three sensors, the first 
and the second sensors with 50% noise.  

The third sensors change from 0% to 100% noise.  
The initiated PM values for two of the LS are the constant (1 

for TT and FF, 0 for TF and FT), and the PM for the third LS is 
changeable. 
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