
 
A Simulation of Hand Written Characters using Neural Networks Techniques 

 
 
 
 

 

Key words: 
Artificial neural network, neocognitron, 
character recognition, pattern recognition 

 
Abstract:  
        The lay out of any character in any language can be 
considered as a collection of lines and dots. These lines and 
dots can be looked at as special features or marks, gathered 
together to give the character its final shape. Although, 
character shapes and meanings vary from one language to 
the other, they may be obtained by using the same set of 
feature patterns.  

A statistical study of the feature availability in 
various characters of one chosen language and their 
frequency of occurrence is presented. The circuit used was 
implementing a neural network model based on 
Fukushima’s neocognitron (learning without tutor) for its 
feature extracting stage.     
This study is conducted toward the aim of full and accurate 
character recognition of hand written script. It must be 
stated that the training patterns used can be extended 
further for more concrete recognition rate by increasing the 
number of training patterns as well as using more pixels at 
the input layer.  
 
1.    Introduction:  
        The automatic recognition of typed characters has 
long been implemented. However, research work on hand 
written characters is still focused on many of the life 
languages around the world [1,2]. Most difficulties in hand 
written character recognition arise due to various distortion 
and noise resulting from personal writing styles, habits, 
moods, etc. Much interest in the use of neural network has 
grown tremendously. Artificial Neural networks, ANN’s, 
lend themselves to be highly applicable for character 
recognition as compared with statistical, syntactical or 
structural approaches. That is because, ANN’s are 
computing systems having many simple, highly connected 
processing elements that process information by its 
dynamic state response to external inputs [3]. Therefore, 
they have certain characteristics with great similarities to 
those of biological neural systems [4].  

        Many approaches are being implemented 
using ordinary feed forward neural networks, like 
Fukushima neucognitron model [5,6,7] or feed back, called 
back-propagation NN’s [8] or a combined system of both 
[9,10]. 
 Generally, Neural Networks, NN’s are 
constructed of many processing elements, as shown in 

figure (1). Each element may have many inputs but it is 
limited to one output signal. In layered neural network 
system, any input signal, which is not an output from 
another processing element must have been coming from 
the outside world. The relationship between input and 
output signals are determined usually by first order ordinary 
differential equations. Auto-adjustment to the coefficients 
of the differential equations gives the neural networks its 
ability to adjust its internal variables. This ability of 
self-adapting dynamic system that can notify its own 
response to external forces is the outstanding feature of the 
NN’s. The basic phenomena of neural learning, is that each 
link has its own small local memory, which stores the result 
of some previous computation as adaptive coefficient. 
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Figure (1) General structure of layered Neural Network 
 

The building block of the NN’s is the Neuron, 
illustrated in figure (2)[11]. It has a set of continuous or 
discrete inputs, X’s, connected through links from previous 
neurons. Each link has an adaptive coefficient called weight, 
a assigned to it. Each weights might generally be used for 
amplification, attenuation or possibly changing the sign of 
the signal in the link. The output of a neuron is calculated 
by:   
            n                                           

                   Sj =   ∑∑ a ij * X i       . . . (1) 

                i=1                                                   
where, aij is the weight of the i-th input vector to the j-th 
neuron. 
Sj is further processed by the activation function ƒ( ) giving 
the final neuron’s output signal Yj , i.e. 

  Yj =  ƒ( Sj)   . . .   (2) 
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   Figure (2) Processing functions inside the Neuron. 
 
The activation function determines the processing 

inside the neuron. It might be linear or non-linear function 
depending on the proposed network. However, the function 
limits the output of the neuron to the desired numerical 
range. Typically, limiting the output between 0 and 1 or 
between –1 and +1 for binary or bipolar function, 
respectively. Numerous numbers of such processing 
elements forms what is referred to as Artificial Neural 
Network, ANN. The learning ability of these networks is 
the basic feature of intelligence [12]. It implies that the 
processing element somehow changes its input/output 
behavior in response to the environment. In a similar 
manner to the way that a child learn to identify various 
things, NN learns by example [13], i.e. by repeatedly trying 
to match that set of input data to the corresponding required 
output. Therefore, after a sufficient number of learning 
iterations, the network modifies the weights in order to 
obtain the desirable behavior pattern for new input 
conditions [3].  ANN’s can be classified by their learning 
scheme as supervised, un-supervised and batch learning 
which correspond to learning with a tutor, no tutor and 
encoding, respectively. 

In this study, Mathematica [17] is used, as 
it lends itself for dealing with large number of 
matrices and matrix operations without the need 
for considerable memory space and complicated 
programming. Moreover, mathematical 
functions can be implemented in neural way as it 
appears in the books. The nested cell feature of 
Mathematica system enables us to deal easily 
with intermediate computations, which makes 
easier program debugging. 
 

2. Feature Extraction: 
NN principle is implemented in this paper using a 

technique that is based on Fukushima neocognitron model 
[5]. His complete pattern recognition model, generally 
consists of cascaded modular structures preceded by input 
layer. Each modular structure composed of two layers of 
cells, simple cells and complex cells, successively. The 
total number of layers was nine and it covers three stages, 
feature extracting stage, classification stage and 
recognition stage. However, recent work [9,10] suggested a 
combined structure consisting of Fukushima neocognitron 
principle while the classification and recognition stages are 
based on back propagation technique. This paper adapts the 

combined structure and concentrates on the feature 
extracting stage only with the aim of an in-depth study of the 
feature contents in hand written script.  

The Circuit for the feature extracting stage consists 
of two layers, simple, (S-layer) and complex (C-layer) 
preceded by an input layer. The input signal is taken as 20 x 
20 cells matrix, which corresponds to the eye retina in 
human visual system. Each of these layers is taken to consist 
of number of planes equal to the number of features under 
study. While each plane is a two dimensional matrix of r x r 
points as detailed in figure (3). The receptive field for the 
S-planes cells is 3 x 3 while that for the C-plane is 5 x 5. 
Generally, less care is taken for the edges, leading to reduce 
the size of the cell planes, in order to concentrate the signal 
in smaller areas. The principle motivation for 
dimensionality reduction is that it can help to alleviate the 
worst effect of the curse of dimensionality [14]. 

Each cell in the S-planes has excitatory inputs 

signal Usj,n through connections having weights aj,ν and 
inhibitory input signal Vsn through connection of weight 
bj. Mathematically, the output signal of the Us, for any 
cell in S-planes is calculated by equation (3). 
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       Figure (3): Schematic diagram for the synaptic 
connections in the feature extracting stage. 
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                       1 +  ΣΣ    ΣΣ  a j,ν  . Un+ ν   
      Us  j,n = r. φ {          k=1  ν “ A   - 1}   . . .   (3)                  
               1 + ( r/(r +1)). b j .Vsn 
where: φ(x) =         x  if x >= 0  

0 if  x < 0 
1  

aj,ν is the strength of the modifiable excitatory 
synapse coming afferently  from cell Un+ν in the preceding 
layer, and A denotes the summation range of ν, bj is the 
strength of the modifiable inhibitory synapse coming from 
inhibitory cells Vn. n is two dimensional co-ordinates 
indicating the position of the cells receptive field center in 
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the input layer U and k = 1,2,..,K  is a serial number 
indicating the type of feature which the cell extract. 

It must be noted that all S-cells in any S-plane 
have an identical set of input interconnections, therefore, 
aj,ν &  bj do not contain any argument related to the position 
n of the receptive field.  

The parameter r represent the inhibitory signal 
efficiency. An inhibitory cell Vs-cell sends signal to this 
Us-cell, yielding an output equal to the weighted root 
square of signals from the pre-synaptic, U-cells which is 
proportional to the Euclidean norm of signal sent by the 
input units, that is: 
                K 

        Vsn =               ΣΣ       ΣΣ   Cν . { Un+ν}
2    . . .  (4) 

                k=1         ν ε A 

Where: Cν represents the strength of excitatory 
un-modifiable synapses [15], which is a monotonically 
decreasing function of |ν|, and satisfies:      
K Σ Cν  = 1, So that each simple cell is sensitive to a 
restricted area of the input pattern, i.e. its receptive field. 
The size of A, which determines the spatial spread of the 
excitatory input connections of an S-cell (also of a V cell), 
corresponds to the size of features to be extracted by the 
S-cell. If the density of local features contained in a pattern 
is high, the size of A has to be relatively small, but if the 
local features are spares, the size can be large. The density 
of the local feature is highly correlated with the complexity 
of input patterns to be recognized. It is obvious, that the 
more complex the pattern, the smaller the size of A [15]. 

As for the C-layer, each C-plane accept input 
connection from the corresponding S-layer. The output of 
each complex cell, Ucj,n in the network is mathematically 
calculated by equation (5). 
           K 

Ucj,n = Ψ{ [ 1 +  ∑∑ Lj,I ∑∑ Dν Usj,n+ν ] / [ 1 + Vsn] } . . . (5) 
               ks=1     ν ε D  
Where ψ(x) is a function specifying the characteristic of 
saturation, and is defined by:  ψ(x) = { φ(x)/(φ(x)+α)}, and 
Lj,I indicates that the output of some S-cell planes are 
joined together and made to converge to a single C-cell 
plane. The value of Lj,i   is 1 if the j-th C-cell plane receives 
signal from the i-th S-cell plane, otherwise it is 0.   
The parameter α (>0) determines the degree of saturation 
of the output. The parameter Dν denotes the strength of the 
excitatory un-modifiable synapses and is monotonically 
decreasing function of |ν| [16]. Its size, which determines the 
spatial spread of the fixed excitatory input connection of a 
C cell, also has a tendency similar to that of A. If the 
density of features in a pattern is large, the size of D has to 
be small. Otherwise, detecting the configuration of local 
features becomes ambiguous. 
3. Recognition: 
        Recognition is achieved by two stages, classification 
stage and output stage. Back-propagation technique with 
biased neurons is adopted for these purposes [10,16] . 
Classification stage corresponds to the hyper-complex 
layer in the biological visual system and can be represented 
by two layers, the lower-order hyper-complex ULOH and 
higher-order hyper-complex UHOH, as shown in figure (4). 

The neurons of these layers decode the output error tolerated 
feature of the previous stage and memorize the information 
about the input patterns, depending on the input features in a 
fully distributed fashion into its internal structure. Finally 
the output stage consists of a number of cell-planes (equal to 
the patterns under consideration), having single cell each. 
Each neuron receives its input from all planes in the 
previous layer. 
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Figure (4): The basic struture of the classification 
and output stage for the back-propagation 
recognition model [10]. 
 

All the cell’s connections are modifiable, but for 
simplification purposes, cells having comparatively larger 
output values are chosen as representative for each 
cell-plane, and only connections to those cells are modified. 
The adjustment of the weights is achieved by calculating the 
error, which is the difference between the calculated output 
and the expected target signal for each training pattern. This 
error is propagated backward through the layers Uout, 
UHOH and ULOH. The calculated error δδ, is used to 
compute the changes in the input connection weights of the 
cells, or the bias weight for each cell in the 
back-propagation layers. i.e  ∆∆ bias = ηη δδ(ki,ni), where ηη is 
the learning factor (0< ηη<1) and δδ(ki,ni) is the calculated 
error for the ni-th cell in the ki-th layer, while i, is the order 
of the layer in this  part of the network (i =3,4,5). This bias 
difference is added to the weight of any signal. Then the 
next pattern of training set is presented in the input layer. 
This process completes one cycle of training, called epoch. 
This process is repeated until the error is reduced to 
negligible value, and now the circuit is ready for 
recognition. 
 

4.  Calculations, Results and Discussion:  
 

The feature extraction circuit is trained first by presenting a 
set of 20 training patterns in the input layer. The group of 
training patterns, used in this study is shown in the second 
column of table (1). They are selected to be the most 
expected pattern feature that can be found in most characters 
to be considered in this study. They included small lines of 
different shapes and orientations. One of these patterns is 
taken at a time in the center of the input layer and the model 
is trained for a single S-plane. A computer program is 



 

written in the powerful Mathematica system to achieve the 
training as follows. 

First, the initial values for the weights are chosen 
as random small values, a’s between 0.01 & 0.001 and b’s 
= 0. Then, the output response is calculated for all cells in 
that plane using equations (3) and (4). The highest value is 
chosen as representative of that particular feature pattern, 
then, the variations in the weights are calculated according 
to the following: 
      ∆ a j,ν  = q Cν  Un+ ν   &   ∆ bj = q Vsn  ,   .  . . (6) 

where q is a positive constant determining the 
speed of reinforcement, which shall have sufficiently large 
value for supervised training (in the order of 104 ), in order 
to have fast convergence. 

 
These variations are used to adjust the old weights, and the 
output response, then taking the highest as representative 
cell. The variations in the weights are recalculated again. 
This completes one epoch. This process is repeated until 
variations in the weights are less than a predefined small 
value. Now, this completes the training for one cell plane 
and the weights values are frozen for that S-plane. This 
process is repeated for all the training patterns, each pattern 
is used to train one S-cell plane. 
 
Table (1): The S-planes of the feature extracting 

stage that have values for the cells > 0.9 
for the selected training templates as 
compared with those for Fukushima model. 

 

Now, for each training pattern in the input layer, 
the response of all the S-planes are calculated. It is found 
that some S-planes are more responsive to certain feature 
than others. However, the response can be illustrated by 
showing the S-planes that have cell values greater than 
certain amount. Tables (1) and (2) show these results for 
planes having cell values greater than 0.9 and 0.5, 
respectively. This clearly indicates that some features 
activate more than one S-plane, which should be considered 
when calculating the cell values of the C-planes, i.e. the 
values of the expected links Lj,i between the S-planes and the 
C-planes of the feature extracting stage. They also show the 
sensitivity of various S-planes for the training patterns used 
by Fukushima [15] for comparison reason. However, if only 
planes with higher cell values (for example, greater than 
0.9) are considered, less planes will be activated for each 
feature pattern.  
 
Table (2): The S-planes of the feature extracting 

stage that have values for the cells > 0.5 for 
the selected training templates as compared 
with those for Fukushima model. 

  
Another way of showing the sensitivity of each 

S-plane for any specific feature pattern is the sum of the 
resulting values for the cells in each plane or more 
specifically their percentage as shown in table (3). Such 
measure looks more representative for the effect of each 
plane on any subsequent calculation.   

The values for the C-cell planes in the Complex 
layer are then calculated using equation (5).   
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As this study is meant for the search for certain 
pre-selected features in numerals and characters, different 
samples of hand written numerals are selected, a sample of 
which is shown in figure (5). Each of these numerals is 
placed in the input layer of the model, and the output 
response for all the feature extraction stage cells are 
calculated. The training patterns used are numbered from 1 
to 20 as was listed in table (1). 

A statistical summary of the availability of the 
included features in the numerals understudy (i.e. 0 to 9) of 
this study is shown in tables (4) illustrating the number of 
cells in the S-planes having values > 0.5. This table shows 
that, all features might be available in all the numerals, but 
with varying levels or sensitivity. For more accurate 
calculations, more S-planes are interconnected to the 
subsequent C-planes, but this would be at the cost of speed. 
A balance must be achieved between recognition speed and 
accuracy. 

 
Table ( 3 ) The percentage of the total contents of the 
S-planes cells in the feature extraction stage for the 
numerals 0 - 9. 

 
 

 
 

Figure (5) Samples of the hand-written numerals used in 
testing the model. 
 Table (4): Number of cells having values >0.5 for the 

simple planes of the feature extraction stage for 
numerals from 0 t0 9. 

 
numerals S-Plane 

number 0 1 2 3 4 5 6 7 8 9 

1 8 1 12 5 11 15 4 13 4 2 
2 10 13 6 10 6 11 15 1 8 11 
3 4 1 8 3 9 3 2 7 6 4 
4 4 0 1 3 0 2 2 0 6 5 
5 1 1 1 2 2 3 2 2 2 2 
6 5 0 8 4 9 6 4 8 7 5 
7 5 3 10 4 10 4 3 8 8 6 
8 1 2 2 2  3 1 2 2 3 1 
9 1 1 1 3 2 1 2 1 3 2 
10 9 14 5 9 5 7 10 3 6 12 
11 5 0 1 4 1 3 5 1 7 6 
12 5 0 2 4 1 3 4 0 7 6 
13 4 0 0 2 1 2 3 2 5 5 
14 0 3 1 1 2 0 0 3 1 1 
15 4 0 7 3 9 5 3 8 5 4 
16 0 1 0 1 0 1 0 1 0 1 
17 0 0 0 0 1 0 0 0 0 0 
18 8 1 11 5 9 6 6 6 10 8 
19 6 0 2 6 0 3 5 0 10 7 
20 4 1 2 3 1 2 3 1 5 4 

 
Various circuit configurations are studied using 

different number of cell planes for the classification stage 
for different training factors. In the following we report the 
resulted calculation for the clearness rate, rejection rate and 
recognition rate as a function of the number of iterations for 
various learning factors and cell-planes, see figures (6 , 7 & 
8). They are defined as number of patterns clearly 
recognized / total number of patterns tested, number of 
patterns rejected / total number of patterns tested and 
number of patterns correctly recognized / total number of 
patterns tested, respectively. For all of the three above 
measurement criteria, it is found that fastest convergence 
occurs when using ηη=0.2, ULOH =7 and UHOH=9.  
 

 
 

Figure (6): The Clearness rate percentage for the circuit 
versus the number of iterations, using biased neurons 
back-propagation for the classification and output stages.  

 

0 1 2 3 4 5 6 7 8 9 

8.11 2.57 10.71 5.93 10.30 13.68 5.72 14.02 3.84 3.61 

8.07 21.61 4.96 8.47 6.33 8.63 12.63 2.39 4.94 8.59 

4.40 3.87 8.83 4.30 9.53 4.30 3.55 9.33 5.91 5.00 

4.40 .66 1.41 4.30 .07 2.13 3..39 0.76 5.91 5.16 

4.91 2.72 6.57 4.30 6.38 7.57 4.35 7.95 3.92 3.91 

4.55 1.36 6.72 4.02 7.22 5.54 4.29 7.75 5.13 4.20 

4.55 6.51 7.24 5.26 7.85 3.94 4.38 6.65 5.86 5.31 

4.91 11.31 5.27 5.62 5.90 4.62 6.38 4.44 4.85 5.42 

4.91 10.29 3,01 6.10 3.00 4.02 6.49 2.09 4.85 5.79 

5.34 16.77 3.75 6.66 4.43 4.63 7.07 3.10 3.97 6.76 

4.56 0 2.61 4.07 1.82 3.64 3.92 2.23 5.13 4.40 

4.56 0.29 2.66 4.61 1.50 3.86 4.21 2.29 5.13 4.42 

5.11 2.52 2.80 4.68 2.67 3.96 4.81 2.95 5.34 5.21 

4.79 4.11 6.85 4.52 6.70 6.87 3.98 8.37 3.96 3.89 

5.11 3.69 7.28 4.82 8.07 6.29 5.20 8.46 5.34 4.65 

3.86 2.91 4.48 4.05 4.56 2.94 2.88 4.59 4.74 4.99 

3.86 1.57 4.11 4.07 4.51 2.98 3.49 4.17 4.74 4.11 

4.26 1.79 5.29 3.81 5.10 3.15 3.67 4.28 5.18 4.60 

4.57 1.23 2.08 4.78 1.27 2.69 4.08 1.03 5.88 5.28 

5.11 4.29 3.77 5.42 2.78 4.57 5.56 3.13 5.34 4.70 



 

 
Figure (7): The Rejection rate percentage for the circuit 
versus the number of iterations, using biased neurons 
back-propagation for the classification and output stages.  
 

 
F

Figure (8): The Recognition rate percentage for the 
circuit versus the number of iterations, using biased 
neurons back-propagation for the classification and 
output stages.  
 
 
5.     Conclusions: 
        Twenty different training patterns are used in the 
training of a neural circuit that uses both Fukushima and 
back-propagation principles for character recognition. The 
availability of these patterns or features in characters and 
numerals varies considerably. Although, all the features 
extracting planes are affected for each input character, it is 
found that a reasonable trade off can be decided to achieve 
a balance between the required accuracy and speed of 
circuit training. This can be manifested by the fast 
convergence speed achieved, which is shown in calculating 
clearness, rejection and recognition rates.  

Large size of input layer and bigger number training 
patterns used in the learning process would increase the 
model ability for accurate response to characters having 
complex features and distorted or shifted, such as hand 
written, without much increase in circuit complexity.  

It should be noted that, biased neurons back-propagation 
circuits are used for the classification stage and the output 
stage rather than Fukushima’s neucognitron only [10]. 
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